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Abstract— We consider the problem of maximizing the through-
put of a multi-input multi-output (MIMO) cognitive radio (CR)
network. CR users are assumed to share the available spec-
trum without disturbing primary radio (PR) transmissions. With
spatial multiplexing performed over each frequency band, a
multi-antenna CR node controls its antenna radiation patterns
and allocates power for each data stream by appropriately
adjusting its precoding matrix. Our objective is to design a set
of precoding matrices (one for each band) at each CR node
so that power and spectrum are optimally allocated for that
node (in terms of throughput) and its interference is steered
away from other CR and PR transmissions. In other words, the
problems of power, spectrum and interference management are
jointly investigated. We formulate a multi-carrier MIMO network
throughput optimization problem subject to frequency-dependent
power constraints. The problem is non-convex, with the number
of variables growing quadratically with the number of antenna
elements. Such a problem is difficult to solve, even in a centralized
manner. To tackle it, we translate it into a noncooperative game
and derive an optimal pricing policy for each node, which adapts to
the node’s neighboring conditions and drives the game to a Nash-
Equilibrium (NE). The network throughput under this NE is at
least equal to that of a locally optimal solution of the non-convex
centralized problem. To find the set of precoding matrices at each
node (the best response), a low-complexity distributed algorithm is
developed by exploiting the strong duality of the per-user convex
optimization problem. The number of variables in the distributed
algorithm is independent of the number of antenna elements. A
centralized (cooperative) algorithm is also developed, serving as
a performance benchmark. Simulations show that the network
throughput under the distributed algorithm converges rapidly to
that of the centralized one. The fast convergence of the game
facilitates MAC design, which we briefly discuss in the paper. The
application of our results is not limited to CR systems, but extends
to multi-carrier (e.g., OFDM) MIMO systems.

Index Terms— Noncooperative game, pricing, cognitive radio,
MIMO, MAC protocol, power allocation, frequency management,
beamforming.

I. INTRODUCTION

Cognitive radio (CR) and multi-input multi-output (MIMO)
technologies have received great attention in recent years. While
the former is viewed as a key enabling technology to improve
spectrum utilization, the later has already proved itself as a pow-
erful signal processing technique to improve spectral efficiency.
Through sensing and/or probing, CRs can opportunistically
communicate on temporarily available spectrum bands while
avoiding interference with licensed-spectrum (or primary radio-
PR) users. MIMO communications improve the channel capac-
ity by sending independent data streams simultaneously over
different antennas (a technique known as spatial multiplexing).

A crucial challenge in CR research is how to effectively allo-
cate transmission powers and spectrum among CRs (see Figure
1(a)) so as to maximize network throughput while avoiding
interfering with PR receptions. Even for a single frequency band
and single-antenna wireless devices, the problem is difficult due
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to the non-convexity of the network throughput function. For
single-antenna CRs, distributed algorithms were developed in
[1] [2] using game theory.

The incorporation of MIMO techniques into CR systems
introduces two new control dimensions (besides power control
and frequency management): power allocation over antennas
(space dimension) and interference management. The latter
comes from MIMO’s degrees of freedom [3], which allow a
MIMO node to suppress interference from others (by using
some of its antennas) and configure its antenna radiation
patterns to keep interference away from unintended receivers.
MIMO’s power allocation and interference management can be
jointly controlled via precoding matrices, a spatial multiplexing
technique [3]. Using this technique, the vector of information
symbols are pre-multiplied with a matrix before being placed
on a transmit antenna array. By tuning the amplitude and the
phase of each complex entry in the precoding matrix, one
adjusts not only the allocated powers but also the radiation
directions, which together shape the antenna radiation patterns.
Previous MIMO-networking works [4] [5] [6] considered power
allocation or stream control (Figure 1(b)) but did not take
into account interference management via controlling antenna
beams. An optimal set of precoding matrices for each node
would be one that allocates power over both space and fre-
quency dimensions (1(c)) and yields radiation patterns that
induce minimum interference (1(d)), so as to maximize the
network throughput. This problem is the focus of our work.

If one ignores the need to protect PR receptions, a MIMO-
based CR system resembles a multi-carrier (e.g., OFDM)
MIMO (MC-MIMO) system. In MC-MIMO, joint power and
spectrum optimization is a non-convex problem, which is at-
tributed to co-channel multi-user interference. Globally optimal
solvers for non-convex problems, e.g., branch and bound,
often have exponentially growing complexity in the number
of variables. Unfortunately, the number of variables in a MC-
MIMO network can be very large. For instance, when using
the precoding technique with 4 antennas per node and 10 sub-
carriers in a network of 10 links, this number is 4× 4× 10×
10 = 1600 complex variables (or 3200 real variables). The
latest advances in power and spectrum management for MC-
MIMO can be found in [7] using dual stochastic optimization.
Similar to the aforementioned works, the authors in [7] [8]
only considered the power allocation (the amplitude) but did
not optimize the antenna radiation directions (the phase).

There have been recent works at the physical layer that
attempt to protect PR communications in a MIMO CR network
(CRN) while maximizing the CRN’s throughput (e.g., [9]
[10] [11]). These works assume full or partial availability of
channel state information (CSI) from each CR to each PR.
This requires feedback or coordination between CRs and PRs.
However, current licensed radio devices are not ready for such
a feedback mechanism, as CR communications are expected to
be transparent to PRs. In our setup, PR communications are
protected by imposing frequency-dependent constraint on the
transmission power of CRs. This assumption is widely used in
single-antenna CRNs e.g., [2] [12]. It should be noted that our
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Fig. 1. Power allocation in frequency (a), space (b), or both (c); Four transmit
radiation patterns steering away from nearby receivers (d).

results are also applicable to CR systems that adapt the CR
transmit powers to the surrounding environment [13].

Because of the challenges associated with power and spec-
trum optimization, most existing works on MIMO CR systems
(e.g., [14] [15] [11]) do not consider optimization over the
frequency dimension. The extension of these works to multi-
band MIMO CRNs is not trivial for two reasons. First, scalar-
value algorithms (e.g., the bisection search in [11]) used for
a single-band MIMO ad hoc network will not work when
searching for optimal vectors in multi-band MIMO CRNs.
Second, if one separately applies results from single-band
MIMO to each individual band of a multi-band MIMO CR
system, the achieved throughput is often low, as the resulting
network operation points do not meet the optimal conditions
(discussed later). In this paper, simulations are used to compare
the performance of such approaches to that of our algorithms.

Motivated by the above, this paper develops low-complexity
distributed algorithms that configure the transmit antenna ra-
diation directions and allocate power over all data streams,
specified by space (subindex s) and frequency (subindex k)
dimensions, so that the MIMO CRN’s throughput is maxi-
mized. We model the power and spectrum allocation in MIMO
CRNs as a price-based noncooperative game [16]. To manage
interference, we derive a diagonal block pricing-factor matrix.
This matrix is user-dependent, and is used to capture the
interference effect from a transmitter to unintended receivers.
Hence, it is a function of the node’s precoding matrices as
well as its neighboring receivers. The pricing-factor matrix not
only improves the Nash-Equilibrium (NE) of the game, but
also drives the game towards a locally optimal point of the
centralized problem. Exploiting the strong duality in convex
optimization, we design a low-complexity distributed algorithm
to determine the set of precoding matrices (best reponse) for
each node. The dimensionality of the distributed algorithm is
only K + 1, where K is the number of frequency bands,
i.e., it does not depend on the antenna array size. We also

develop a centralized algorithm for the network optimization
problem, where nodes are assumed to work in a cooperative
way. Simulations show that the performance of the distributed
algorithm is almost the same as that of the centralized one.

Throughout the paper, we use (.)∗ to denote the conjugate
matrix, (.)H to denote the Hermitian matrix transpose, tr(.) for
the trace of a matrix, and det(.) for the determinant. Matrices
and vectors are indicated in boldface.

In Section II, we present the network model and the problem
formulation. The noncooperative game analysis, optimal pricing
policy, convergence proof, and the distributed algorithm are
given in Section III. The centralized algorithm is developed
using augmented Lagrangian multipliers in Section IV. Numer-
ical results are discussed in Section V. Concluding remarks are
provided in Section VI.

II. PROBLEM FORMULATION

We consider a CRN that coexists with several PR networks.
The CRN consists of N links. Each CR node is equipped with
M antennas. The spectrum to be allocated is comprised of K
orthogonal frequency bands (also referred to as channels). Let
ΦN

def
= {1, 2, . . . , N} and ΨK

def
= {1, 2, . . . ,K} denote the sets

of CR links and channels, respectively. Each CR user i can
simultaneously communicate over multiple frequency bands,
denoted by the set Si. We impose a half-duplex constraint on all
transmissions, meaning that a CR cannot transmit and receive
at the same time.

The transmitter of each CR link can send up to M indepen-
dent data streams on its M antennas over a given channel. A
node controls the emitted antenna pattern and power allocation
for these streams through its precoding matrices. Formally, for
frequency band k, let x

(k)
i be a column vector of M information

symbols, sent from node i to its destination node d(i). Each
element of x

(k)
i belongs to one data stream. Let T̃

(k)
i denote

the precoding matrix of node i on channel k. Then, the actual
transmit vector is T̃

(k)
i x

(k)
i .

We allow for spectrum sharing among different CR links.
This assumption is in contrast to the case that restricts to one
CR transmission on a given frequency channel in the same
neighborhood. In our setup, several CR links can simultane-
ously occupy the same channel. Specifically, for a frequency
band k, the received signal vector y

(k)
d(i) at the receiver d(i) of

link (i, d(i)) is given by:

y
(k)
d(i) = H

(k)
d(i),iT̃

(k)
i x

(k)
i +

∑
j∈ΦN\{i}

H
(k)
d(i),jT̃

(k)
j x

(k)
j + Nk (1)

where the first term in the RHS of (1) is the desired signal
sent from transmitter i and H

(k)
d(i),i is the channel gain matrix

on channel k from the transmitter i to the receiver d(i).
Specifically, H

(k)
d(i),i

def
= |h1h2 . . .hM |, where hs is an M × 1

column vector of channel gains from transmit antenna s to
all M receiving antennas, s = 1, . . . ,M . We assume a flat-
fading channel. Each entry of H

(k)
d(i),i is a complex Gaussian

variable with zero mean and unit variance. The second term
in the expression of y

(k)
d(i) represents interference from other

CR links that share channel k with link (i, d(i)). Nk is an
M ×1 complex Gaussian noise vector with identity covariance
matrix I, representing the noise floor as well as interference
from nearby PR users on band k.

The Shannon capacity of link (i, d(i)), referred to as (i) for
short, on channel k is [3]:

R
(k)
(i) = log det(I + T̃

(k)H
i H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),iT̃

(k)
i ) (2)
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where C
(k)
d(i) is the noise-plus-interference covariance matrix at

d(i) over band k, given by:

C
(k)
d(i) = I +

∑
j∈ΦN\{i}

H
(k)
d(i),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(i),j .

The total channel rate over all frequency bands of link i is:

R(i) =
∑
k∈ΨK

R
(k)
(i) . (3)

We use P
(i)
s,k to denote the power allocated on band k (fre-

quency dimension) at stream s (space dimension or antenna)
of CR user i. P (i)

s,k is the entry (s, s) on the diagonal of
matrix (T̃

(k)
i T̃

(k)H
i ). For user i, the total power allocated on

all frequency bands and all antennas should not exceed its
maximum power budget Pmax (we assume an identical power
limit for all CR users). Consequently,∑

k∈ΨK

M∑
s=1

P
(i)
s,k =

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmax. (4)

Spectrum sharing between CR and PR transmissions takes
two forms: spectrum overlay and spectrum underlay. In the
former, CRs only occupy a channel if on that channel, no
PR is detected (also known as a detect-and-avoid mechanism).
Spectrum underlay allows CR users to occupy a channel
even if PRs are detected, provided that the transmissions of
CRs do not deteriorate the quality of service for PR users.
There are two methods to realize underlay spectrum shar-
ing: static and dynamic. The static method requires that the
transmit power of CRs on frequency channel k is always
less than a given power mask Pmask(k). Let Pmask

def
=

(Pmask(1), Pmask(2), . . . , Pmask(K)) denote the power mask
on all channels. Instead of specifying hard constraints on the
transmit powers of CRs, the dynamic method adapts these
transmit powers of CRs to activities from neighboring PRs and
other CRs so that the total interference (from all CRs and PRs)
at a nearby PR receiver does not exceed a threshold. Though
the dynamic method may result in higher network throughput,
it requires coordination among CRs and PRs and can only
statistically guarantee the PRs’ quality of service. This is due to
the fact that it is impractical to accurately model and estimate
the interference from CR and PR links. In this paper, we use
the static method, implying that:

M∑
s=1

P
(i)
s,k = tr(T̃(k)

i T̃
(k)H
i ) ≤ Pmask(k). (5)

It should be noted that our subsequent analysis is also applicable
to the dynamic method and the detect-and-avoid mechanism.

We aim at maximizing the CRN throughput. Mathematically,
the network optimization problem can be stated as follows:

maximize
{T̃(k)

i ,∀k∈ΨK ,∀i∈ΦN}

∑
i∈ΦN

R(i)

s.t.
C1:

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )≤Pmax, ∀i ∈ ΦN

C2: tr(T̃(k)
i T̃

(k)H
i )≤Pmask(k), ∀k ∈ ΨK ,∀i ∈ ΦN .

(6)

III. GAME THEORETIC DESIGN

The network optimization problem (6) is not convex due to
the presence of interference among CR users that share the same
frequency band. Thus, even in a centralized manner, computing
the globally optimal solution is prohibitively expensive. Thus,
we reformulate it using game theory and derive a pricing

function for each CR link that guarantees a locally optimal
solution for problem (6), found in a distributed manner.

A. Game Formulation
A noncooperative game is characterized by its set of players,

their action/strategy space, and their utility/payoff functions.
For the underlying CRN, the set of CR links ΦN represents
the set of players. The action space is the union of the action
spaces of various players, subject to constraints C1 and C2
in (6). The action/strategy space for each player is the set of
all possible precoding matrices for the K frequency channels
in ΨK . Formally, an action from the action space of link i is
denoted by T̃i

def
= (T̃

{1}
i , T̃

{2}
i , . . . , T̃

(k)
i ), which can be viewed

as an M×KM block matrix, comprised of K M×M matrices.
Let T̃−i

def
= (T̃1, T̃2, . . . , T̃i−1, T̃i+1, . . . , T̃N ) be the set of

actions from all links, except link i. The utility or payoff of
player i for its action T̃i is mapped to link i’s Shannon rate,
which also depends on the selection of the precoding matrices
from other CR links T̃−i:

Ui(T̃i, T̃−i)
def
= R(i)

=
∑
k∈ΨK

log det(I + T̃
(k)H
i H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),iT̃

(k)
i ).

(7)

Due to the noncooperative nature of the game, the transmitter
of each link allocates its transmission power over both space
and frequency dimensions, and configures its radiation direc-
tions to maximize its own return. Formally, each CR user i
solves the following problem for its precoding matrix set T̃i:

maximize
{T̃(k)

i ,∀k∈ΨK}
Ui(T̃i, T̃−i)

s.t.
C1’:

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmax

C2’: tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmask(k), ∀k ∈ ΨK .

(8)

By solving the above problem, CR users implicitly interact
with each other through their choice of the precoding matrices.
Under some conditions, the game reaches a NE where no CR
user has incentive to unilaterally deviate from. However, as each
CR user behaves selfishly, the resulting NE is often far from
the Pareto optimum, and network throughput can be low.

To drive the above noncooperative game to a better NE,
i.e., achieve higher social welfare, we use a pricing or taxation
mechanism to encourage selfish players to work in a cooperative
manner [17]. Pricing makes players more socially responsible
for their actions. The utility function with price is defined as
follows:

U
′

i (T̃i, T̃−i)
def
= Ui(T̃i, T̃−i)− Fu(T̃i) (9)

where Fu(T̃i) is the pricing function for link i. Consequently,
we come up with the following noncooperative game with
pricing:

maximize
{T̃(k)

i ∀k∈ΨK}
U
′

i (T̃i, T̃−i), ∀i ∈ ΦN

s.t.
C1’ and C2’ as in problem (8).

(10)

B. Pricing Policy
A Pareto-optimal pricing policy is one that drives the game

to a NE on the Pareto frontier. An optimal pricing policy
is one that yields the game to a NE that is identical to
the globally optimal solution of the non-convex problem (6).
However, deriving such a pricing function is often difficult for
two reasons. First, it is hard to characterize the optimal or the
Pareto-optimal pricing policy, making it not possible to quantify
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the performance gap between these policies and the achieved
NE. Second, an optimal pricing function that requires global
network information is impractical for a distributed network.
To improve the efficiency of the NE, the pricing functions in
the literature are usually based on heuristics. For instance, the
pricing functions in [18] are suboptimal linear functions with
a fixed pricing-factor.

In economics, the pricing function can take various forms to
account for various marketing and pricing policies, e.g., volume
discount, coupon discount, etc. In the context of network
resource allocation, both linear (e.g., [2] [19]) and nonlinear
[1] pricing functions have been proposed. In this paper, we
define the pricing function Fu(T̃i) as follows:

Fu(T̃i) = tr
[
T̃H
i ×Ai × T̃i

]
(11)

where

Ai =


A

(1)
i 0 · · · 0

0 A
(2)
i · · · 0

...
...

. . .
...

0 0 · · · A
(K)
i

 (12)

is an KM × KM block diagonal matrix, consisting of K
blocks along its diagonal. The kth block A

(k)
i is an M ×M

positive-semidefinite matrix. Ai is referred to as the pricing-
factor matrix of CR link i and A

(k)
i is referred to as the pricing-

factor matrix at frequency band k of link i. The following
theorem guarantees the existence of a NE of the game (10).

Theorem 1: There exists at least one NE for the noncoop-
erative game in (10).

Proof: See [20]. �

The above game can have more than one NE. To guarantee a
lower bound on the efficiency of the achieved NE, we propose
in the next theorem a user-dependent pricing function. The
proposed pricing policy ensures that at the resulting NE, the
CRN throughput is at least as good as that of a locally optimal
solution to the network optimization problem (6).

Theorem 2: For the game in (10) to converge to a NE at
which the CRN’s throughput equals to that of a locally optimal
solution of problem (6), the pricing-factor matrix Ai in (12)
must have its k block matrix A

(k)
i of the following form:

A
(k)
i =

∑
j∈ΦN\{i}

H
(k)H
d(j),iC

(k)
d(j)

−1
H

(k)
d(j),j [(T̃

(k)
j T̃

(k)H
j )−1

+H
(k)H
d(j),jC

(k)
d(j)

−1
H

(k)
d(j),j ]

−1H
(k)H
d(j),jC

(k)
d(j)

−1
H

(k)
d(j),i

(13)

Proof: See Appendix I. �

To compute the pricing-factor matrix Ai in (12), a CR trans-
mitter i needs to obtain feedback regarding the interference-
plus-noise covariance, the precoding, and the channel matrices
from all other links. In practice, if the channel gain matrix from
i to d(j) is too weak, i.e., H

(k)
d(j),i ≈ 0, there is no need for

d(j) to send its feedback to i. Hence, i only gets feedback from
receivers d(j) that are within i’s vicinity. It is also worth noting
that the feedback information is locally available at a receiver
d(j) as a byproduct of its decoding process (i.e., successive
interference cancelation (SIC) receivers [3]). The kth block
A

(k)
i of the pricing factor matrix in (13) agrees with that in

[11] for a single-band MIMO ad hoc network using first-order
Taylor series approximation. How a MAC protocol design can
support the computation of the above pricing-factor matrix at
a node will be discussed shortly.

C. Best Response: Optimal Antenna Radiation Directions and
Power Allocation

We now solve the individual utility optimization problem
(10), from which a CR user finds its best response given the
actions of other CR links. Noting that problem (10) is convex
and that the Slater’s conditions can easily be shown to hold [21],
strong duality holds for problem (10), i.e., an optimal solution
T̃i to (10) should also solve the following dual problem (as in
the case of a single frequency MIMO network [11]):

DP : minimize
{α(k)

i ,γi≥0,∀k∈ΨK}
D(α

(k)
i , γi) (14)

where D(α
(k)
i , γi) is the dual function, defined as:

D(α
(k)
i , γi) = maximize

{T̃(k)
i ,∀k∈ΨK}

Li(T̃i, α
(k)
i , γi). (15)

with Li(T̃i, α
(k)
i , γi) is the Lagrangian function defined in (29).

The optimal matrix T̃i of (10) is featured in the following
theorem.

Theorem 3: The M × KM block matrix T̃i that solves
the individual utility optimization problem (or the user’s
best response) must have its kth block, the matrix T̃

(k)
i ,

in a form of the generalized eigen matrix of the matrix
H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i and matrix A

(k)
i + (α

(k)
i + γi)I, where

α
(k)
i and γi are the optimal Lagrange multipliers of (10). In

other words, the following equations must hold ∀k ∈ ΨK :

H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),iT̃

(k)
i =[A

(k)
i +(α

(k)
i +γi)I]T̃

(k)
i Λ

(k)
i

(16)

where Λ
(k)
i is a given M ×M diagonal matrix.

Proof: See [20]. �
As previously discussed, the precoding matrix T̃

(k)
i deter-

mines both the directions of the antenna radiation as well
as how node i allocates its transmission power on different
antennas over frequency band k. Theorem (3) states a class
of matrices that the solution of (10) must belong to. This
class provides the directions that a user i should point its
antenna radiation to. The next step is to find the optimal power
allocation P (i)

s,k for the set of KM data streams. To ensure that
T̃

(k)
i belongs to the class of matrices specified by Theorem (3),

we let:
T̃

(k)
i = T

(k)
i ×P

(i)
k

1/2
(17)

where T
(k)
i is an M×M matrix with unit-norm column vectors

that satisfies (16). This matrix can be found by normalizing the

generalized eigen matrix T̃
(k)
i . P

(i)
k

1/2
is a square root matrix of

the M×M diagonal matrix P
(i)
k whose diagonal entry (s, s) is

the power allocated to sub-channel (s, k), P (i)
s,k. We can verify

that the expression of T̃
(k)
i in (17) satisfies (16). As T̃

(k)
i is

a generalized eigen matrix of the matrix H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i

and matrix A
(k)
i +(α

(k)
i +γi)I, then T

(k)
i must also be an eigen

matrix to each of the two matrices [22]. Thus, the following
equations hold:

T
(k)H
i [H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i]T

(k)
i = Π

(k)
i

(18)

T
(k)H
i [A

(k)
i + (α

(k)
i + γi)I]T

(k)
i = Ω

(k)
i

(19)

where Π
(k)
i and Ω

(k)
i are M ×M (diagonal) matrices of the

generalized eigenvalues of the matrices H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i

and A
(k)
i + (α

(k)
i + γi)I, respectively.
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Plugging (18) and (19) into the Lagrangian function (29), we
have:

Li(T̃i, α
(k)
i , γi)

=
∑
k∈ΨK

{
M∑
s=1

{log(1 + P
(i)
s,kdiags(Π

k
i ))− P (i)

s,kdiags(Ω
(k)
i )}

+ α
(k)
i Pmask(k) +

γi
K
Pmax}.

(20)

The optimal power allocation P
(i)
s,k is obtained by equating

the derivative of the Lagrangian (20) w.r.t P (i)
s,k to zero:

∂Li(T̃i, α
(k)
i , γi)

∂P
(i)
s,k

=
diags(Π

k
i )

1 + P
(i)
s,kdiags(Π

k
i )
− diags(Ω

(k)
i )

= 0

(21)

Thus:

P
(i)
s,k = max

(
0,

diags(Π
(k)
i )− diags(Ω

(k)
i )

diags(Π
(k)
i )diags(Ω

(k)
i )

)
(22)

Plugging (22) into (20), we obtain the dual function:

D(α
(k)
i , γi) =

∑
k∈ΨK

{
M∑
s=1

{log
diags(Π

(k)
i )

diags(Ω
(k)
i )
− 1 +

diags(Ω
(k)
i )

diags(Π
(k)
i )
}

+ α
(k)
i Pmask(k) +

γi
K
Pmax}

∀s, k such that diags(Π
(k)
i ) > diags(Ω

(k)
i ) > 0.

(23)

To solve the DP (14) for α(k)
i and γi, we note that the prob-

lem is convex, hence, any stationary point is a globally optimal
solution. Moreover, as the objective function and constraints of
the primal problem (10) is continuous w.r.t every entry of T̃i,
the dual function D(α

(k)
i , γi) is differentiable w.r.t α(k)

i and γi
[23]. Hence, a gradient algorithm can be used to obtain the
optimal Lagrangian multipliers α(k)

i and γi by searching for a
stationary point of the augmented Lagrangian of DP. It should
be noted that even if the dual function is not differentiable
(i.e., multiple subgradients may exist), a subgradient-based
search algorithm with appropriate step size can still be used to
converge to the optimal point [23]. The augmented Lagrangian
of DP is given by:

L(α
(k)
i , γi, p, λ

(k))

= D(α
(k)
i , γi) +

p

2
{(max{0, λ(1) − pγi})2 − (λ(1))2}

+
p

2

∑
k∈ΨK

{(max{0, λ(k+1) − pα(k)
i })

2 − (λ(k+1))2}
(24)

where p is a positive penalty parameter (for violating the
constraints) and λ(k)’s are nonnegative Lagrangian multipliers.

Our gradient algorithm uses Armijo step with steepest de-
scent direction. This search mechanism together with the above
analysis are summarized in Algorithm 1. We emphasize that by
exploiting the strong duality, this algorithm needs only to deal
with K+1 variables, instead of 2KM2 variables of the primal
problem (10).

Although the individual optimization (10) is to be solved
distributedly at each node, at the achieved NE, network through-
put is analytically guaranteed to be as good as that of a
locally optimal point of the network optimization problem (6).
Before developing a centralized algorithm that serves as a
simulation’s performance benchmark, let’s briefly discuss how a

MAC protocol can implement Algorithm 1 and its convergence
behavior.
Algorithm 1 Distributed Algorithm for the Power Allocation
and Spectrum Management Game

1: Input:
T̃−i = [T̃1(t + 1), ..., T̃i−1(t + 1), T̃i+1(t), ..., T̃N (t)]
with Gauss-Seidel iteration
T̃−i = [T̃1(t), ..., T̃i−1(t), T̃i+1(t), ..., T̃N (t)]
with Jacobi iteration

2: Initialize
T̃

(k)
i (t+ 1)← T̃

(k)
i (t), γi ← 0;α

(k)
i ← 0,∀k ∈ ΨK

3: while true do
4: β ← .7, σ ← .1%used in Armijo search
5: λ(k) ← .1∀k = 1 . . . (K + 1)
6: p← 1
7: while ∂L(α

(k)
i , γi, p, λ

(k)) 6= 0 do
8: step← 0.1
9: D ← ∂L(α

(k)
i , γi, p, λ

(k))
10: d← −step×D;m← 0
11: {Find Armijo step size}
12: while L(α

(k)
i , γi, p, λ

(k))−L(α
(k)
i +d, γi+d, p, λ

(k))≤
−σβmstep∂LD do

13: step← step× β;m← m+ 1
14: d← −step×D
15: end while
16: α

(k)
i ← α

(k)
i + d, γi ← γi + d

17: end while
18: if min(α

(k)
i , γi,∀k ∈ ΨK) ≥ 0 break

19: ∀k ∈ ΨK :
20: λ(k) ← λ(k) − pα(k)

i if λ(k) − pα(k)
i > 0 else λ(k) = 0

21: λ(1) ← λ(1) − pγi if λ(1) − pγi ≥ 0 else λ(1) = 0
22: p← p× µ%µ ≥ 1, increase cost of violation
23: end while
24: Plug γi, α

(k)
i into (16) (Theorem 3) to find T

(k)
i

P
(i)
k is found from (18), (19), (22). T̃

(k)
i is found from (17).

25: RETURN T̃
(k)
i (t+ 1),∀k ∈ ΨK at time (t+ 1)

D. Overview of a MAC Protocol
Using either a dedicated control channel or some frequency

hopping mechanisms to establish an initial dialogue, a MAC
protocol that executes the distributed Algorithm 1 can be de-
signed. This protocol divides the time axis into three windows:
Access window, training window, and data window. The access
window is dedicated to CR nodes that have data to send. These
nodes first exchange some initial rendezvous packets (e.g.,
CTS and RTS). After this phase, several pairs of CR users
communicate during the training window, whose purpose is
to exchange/negotiate transmit strategies (precoding matrices).
The signalling packets in either the access or transmit windows
can also be used to embed training sequences to obtain channel
gain matrices. The data window then follows with multiple
data packets sent using negotiated transmission strategies. A
representative game-based MAC protocol can be found in [2].

To reduce the feedback overhead, one may relax the time
scale of recalculating the pricing-factor matrix. This presents
a tradeoff between throughput and feedback freshness. Specif-
ically, the pricing-factor matrix can be recomputed following
every data packet (packet-based) or a flow of packets (flow-
based) [24] [25].

An important issue for protocol designers is how to set the
size of the training window. That depends on the convergence
speed of the updating process. To ensure that the training
window is not too long, the updating and negotiation processes
must converge. During the training window, a node can use
either Gauss-Seidel (sequential) or Jacobi (parallel) iterations
to update its precoding matrices. Though we cannot prove the
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convergence under the Jacobi iteration, simulations show that
the distributed algorithm converges faster with Jacobi iterations
than with Gauss-Seidel (less than nine iterations for about ten
links in Figure 4). The convergence behavior under the Gauss-
Seidel iteration is claimed in the following theorem.

Theorem 4: Under the sequential updating procedure
(Gauss-Seidel), the distributed Algorithm 1 drives the game (10)
to its NE.

Proof: For brevity, we give an outline of the proof, and
refer the reader to [20] for the complete proof. To establish
the convergence, one can find a Lyapunov-type function of the
precoding matrices and show that the function is non-decreasing
and upper-bounded (e.g., [26]). The converged point must be a
NE, otherwise one user can still unilaterally improve its return
U
′

i (T̃i, T̃−i) (which violates the convexity of the individual
problem (10)). �

IV. CENTRALIZED ALGORITHM

From a game theoretic perspective, a centralized algorithm
can be obtained by formulating the problem as a cooperative
game, where a network operator somehow controls the behav-
iors of all players in order to maximize the network throughput
(total payoff). In this section, we use the augmented Lagrangian
multiplier method to derive such a centralized algorithm. We
rewrite problem (6) as follows:

minimize
{T̃(k)

i ,∀k∈ΨK ,∀i∈ΦN}
−
∑
i∈ΦN

R(i)

s.t.
ci =

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax ≤ 0 ∀i ∈ ΦN

ck,i = tr(T̃(k)
i T̃

(k)H
i )− Pmask(k) ≤ 0 ∀k ∈ ΨK ,∀i ∈ ΦN

(25)
The augmented Lagrangian of (25) is given by [23]:

L(T̃, α
(k)
i , γi, p)

= −
∑
i∈ΦN

R(i) +
p

2

∑
i∈ΦN

{(max{0, γi + pci})2 − (γi)
2}

+
p

2

∑
i∈ΦN

∑
k∈ΨK

{(max{0, α(k)
i + pck,i})2 − (α

(k)
i )2}

(26)

where p is a positive penalty parameter (for violating the
constraints), and α(k)

i and γi are nonnegative Lagrangian mul-
tipliers.

At a locally optimal solution, we have:

0 =
∂L(T̃, α

(k)
i , γi, p)

∂T̃
(k)∗
i

= −
∑

j∈ΦN\{i}

∂R
(k)
j

∂T̃
(k)∗
i

− ∂R
(k)
i

∂T̃
(k)∗
i

+
p

2
{∂{(max{0, γi + pci})2}

∂T̃
(k)∗
i

+
∂{(max{0, α(k)

i + pck,i})2}
∂T̃

(k)∗
i

}

(27)

The first term in (27) is computed in (34). Its second term
is given as:

∂R
(k)
i

∂T̃
(k)∗
i

= H
(k)H
d(i),i(C

(k)
d(i) + H

(k)
d(i),iT̃

(k)
i T̃

(k)H
i H

(k)H
d(i),i)

−1H
(k)
d(i),iT̃

(k)
i .
(28)

Since ci and ck,i are continuously differentiable w.r.t every
entry of T̃, the third and fourth terms in (27) are also contin-

uously differentiable [23]. Their derivatives are as follows:

∂{(max{0, γi + pci})2}
∂T̃

(k)∗
i

=

{
0 if γi + pci ≤ 0

2p(γi + pci)T̃
(k)
i

∂{(max{0, α(k)
i + pck,i})

2
}

∂T̃
(k)∗
i

} =

{
0 if α(k)

i + pck,i ≤ 0

2p(α
(k)
i + pck,i)T̃

(k)
i

As mentioned earlier, because the network optimization
problem is not convex, the centralized algorithm can only
lead to a locally optimal point. For that purpose, we use the
gradient search algorithm with Armijo step size [23] to find
(T̃, α

(k)
i , γi, p) such that equation (27) holds for all frequency

bands k and all users i. The details of the centralized algorithm
is presented in Algorithm 2.

We emphasize that network throughput may vary from a
locally optimal point to another. To account for such phe-
nomenon, one can run the simulations multiple times with
various starting points (initializations) and take the average
of the achieved throughput. The running time of Algorithm
2 can be high, as it involves NKM2 complex variables (or
2NKM2 real ones). To implement Algorithm 2, one should
convert complex matrices to vectors of real variables.

Algorithm 2 Centralized Algorithm for the Social Optimization
Problem (6)

1: Initialize
T̃

(k)
i ← I, γi ← 0;α

(k)
i ← 0,∀k ∈ ΨK ,∀i ∈ ΦN

2: while true do
3: β ← .7, σ ← .1%used in Armijo search
4: γi ← 0, α

(k)
i ← 0,∀k ∈ ΨK ,∀i ∈ ΦN

5: p← 1
6: while ∂L(T̃, α

(k)
i , γi, p) 6= 0 do

7: step← 0.1
8: D ← ∂L(T̃, α

(k)
i , γi, p)

9: d← −step×D;m← 0
10: {Find Armijo step size}
11: while L(T̃, α

(k)
i , γi, p) − L(T̃ + d, α

(k)
i , γi, p) ≤

−σβmstep∂LD do
12: step← step× β;m← m+ 1
13: d← −step×D
14: end while
15: T̃← T̃ + d
16: end while
17: if max(ci, ci,k,∀k ∈ ΨK ,∀i ∈ ΦN ) ≤ 0 break
18: ∀k ∈ ΨK ,∀i ∈ ΦN :
19: γi = γi + pci if γi + pci ≥ 0 else γi = 0
20: α

(k)
i = α

(k)
i + pck,i if α(k)

i + pck,i ≥ 0 else α(k)
i = 0

21: p← p× µ%µ ≥ 1, increase cost of violation
22: end while
23: RETURN T̃

(k)
i , ∀k ∈ ΨK ,∀i ∈ ΦN

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the distributed algorithm using MATLAB-based simulations.
We compare the network throughput of the distributed algo-
rithm with the centralized one and with a greedy algorithm,
in which nodes selfishly attempt to maximize their own rates.
The greedy algorithm is exactly the same as the distributed one
except that its pricing-factor matrix Ai is a null matrix. Another
algorithm called uniform is obtained by uniformly dividing a
node’s total transmit power over all available channels and then
applying the single-band approach in [11] for each channel.
We emphasize that this uniform algorithm does not meet the
optimality conditions (32) of the network problem (6).
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(a) Greedy algorithm: Channel 1
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(b) Greedy algorithm: Channel 2
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(c) Greedy algorithm: Channel 3
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(d) Distributed algorithm: Channel 1
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(e) Distributed algorithm: Channel 2
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(f) Distributed algorithm: Channel 3
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(g) Centralized algorithm: Channel 1
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(h) Centralized algorithm: Channel 2
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(i) Centralized algorithm: Channel 3
Fig. 2. Antenna radiation patterns under the greedy, distributed, and centralized algorithms.

Because the number of variables in the centralized algorithm
is quite high (2NKM2), its running time can be very long.
Therefore, to compare the performance of the four algorithms,
we consider a CRN of N = 10 links with K = 3 bands.
The carrier frequencies for these bands are f1 = 2.4 GHz,
f2 = 2.7 GHz, and f3 = 3 GHz. These bands have identical
channel bandwidth of 1 MHz. The antenna array size M = 4.
The results are averaged over 30 runs. In each run, N links
are randomly placed in a 100 meter × 100 meter square. The
maximum power at each node is 2W and the power mask is
0.8W on all frequency bands. The channel fading is flat with
free-space attenuation factor of 2. The spreading angles of the
signal at the receive antennas range from −π/5 to π/5. For
the lowest frequency, we assume that the received power at a
reference distance of 100 meters reduces 10 dB compared with
the transmit power. To account for the frequency-dependent
attenuation factor, we assume that the received power at the
reference distance decreases 2 dB more if the frequency in-
creases by 300 MHz. As mentioned before, the noise from
PR transmissions is treated as floor noise that together with
the thermal noise are normalized to a unit variance. The
initializations of the precoding matrices are different for all
algorithms.

A snapshot of the network topology and antenna radiation
patterns (at the converged points) over different frequencies is
shown in Figure 2. We can visually note that the transmitters
under the distributed and centralized algorithms often steer
their beams away from neighboring receivers. This results from
attempting to minimize the price function (11). It can also be
seen that the antenna patterns of the distributed and centralized
algorithms are very similar, suggesting the two algorithms may
converge to the same point.

Figure 3 depicts the network throughput under four algo-
rithms (distributed, centralized, greedy, and uniform) versus the
number of iterations. Though the network performance at the

converged points for the distributed and centralized algorithms
change with their starting points, after averaging over multiple
runs with different initializations, the throughput of the dis-
tributed algorithm is almost the same as that of the centralized
one. We also notice that by using the proposed pricing policy to
regulate interference, the distributed algorithm almost doubles
the network throughput compared with the greedy algorithm.
The uniform algorithm also improves network throughput over
the greedy one but it remains inferior to the distributed algo-
rithm. This is because the uniform algorithm evenly allocates
its power over all available channels and does not do optimize
over the frequency dimension, while the distributed algorithm
attempts to optimize the antenna radiation patterns and the
power allocation over both space and frequency.
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Fig. 3. Network throughput vs. iterations.
To evaluate the energy efficiency of the four algorithms, we

record the average power consumption and power allocation
over all nodes and all run. As shown in Table I, without regu-
lating interference, nodes under the greedy algorithm selfishly
compete for their own throughput by always using their max-
imum power (2W ), leading to the highest power consumption
among the four algorithms. The power consumption for the
distributed algorithm is comparable to that of the centralized
and uniform algorithms, and 10% less than that of the greedy
one. Power allocation over both space and frequency at a
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representative node under the distributed algorithm is shown in
Table II. From Tables I and II, we notice that the inequality
constraints in problems (10) and (6) are not active at their
solutions. That is because transmitting at high power may be
expensive due to the proposed pricing method.

Channels Centralized Greedy Distributed Uniform
f1 0.768 0.71 0.76 0.658
f2 0.643 0.66 0.61 0.556
f3 0.422 0.63 0.44 0.627

Total (W) 1.823 2.00 1.81 1.831

TABLE I
AVERAGE POWER CONSUMPTION AND POWER ALLOCATION OVER

DIFFERENT CHANNELS (IN WATTS).

Antennas f1 f2 f3
1 0.135 0.085 0.15e− 10
2 0.209 0.386 0.02
3 0.550 0.314 0.06e− 10
4 0.194 0.035 0.305

Total=1.913(W) 0.788 0.8 0.325

TABLE II
POWER ALLOCATION AT A NODE OVER SPACE AND FREQUENCY

DIMENSIONS UNDER THE DISTRIBUTED ALGORITHM (IN WATTS).

We say that the algorithm converges if the change in the
throughput of one iteration (relative to the previous iteration) is
less than a given threshold (i.e., 3%). The convergence speed of
the distributed algorithm versus the number of links is shown
in Figure 4. As we can see, under both updating procedures
(Jacobi and Gauss-Seidel), the distributed algorithm converges
very fast. Using Jacobi iteration results in faster convergence.
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Fig. 4. Convergence speed of the distributed algorithm.

Figure 5 depicts the network throughput under the distributed
and greedy algorithms versus the number of links using Jacobi
iteration. The distributed algorithm consistently improves the
throughput over the greedy one. The improvement becomes
more significant with a higher number of links. That is because,
as node density increases (higher number of links), network
interference increases. Interference management becomes more
critical and has more impact on throughput.
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Fig. 5. Network throughput vs. the number of links.
VI. CONCLUSIONS

In this work, we investigated the spectrum sharing problem
in multi-antenna CRNs. By adjusting the precoding matri-
ces, we allocate power over both the frequency and space

dimensions while managing the antenna’s radiation beams to
reduce network interference, aiming at maximizing the network
throughput. Using game theory and the strong duality in convex
optimization, we designed a low-complexity distributed algo-
rithm that achieves the same throughput as a locally optimal
point of the non-convex centralized network problem. The key
idea behind the algorithm is the introduction of a diagonal
block pricing-factor matrix for each CR. This matrix regulates
network interference by encouraging CRs to work in a cooper-
ative manner. Simulations showed that the proposed algorithm
dramatically improves network throughput and achieves higher
energy efficiency, compared with other solutions. We believe
that controlling radiation beams in multi-antenna systems is an
important optimization dimension, besides controlling streams
and powers.
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APPENDIX I
PROOF OF THEOREM 2

In Theorem 4, we prove that the game converges to a NE. We
now need to show that the form of the pricing-factor matrix in
(12) and (13) is necessary and sufficient to ensure the achieved
NE meets K.K.T optimality conditions of (6).

The achieved NE is characterized by the solutions of all N
per-user optimization problems (10). For user i, the Lagrangian
function is written as:

Li(T̃i, α
(k)
i , γi)

= U
′

i (T̃i, T̃−i)−
∑
k∈ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )− Pmask(k)]

− γi[
∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax]

=
∑
k∈ΨK

{R(k)
i − tr(T̃(k)H

i A
(k)
i T̃

(k)
i )}

−
∑
k∈ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )− Pmask(k)]

− γi[
∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax]

(29)

where α(k)
i and γi are the nonnegative Lagrangian multipliers.

Since the individual utility optimization problem is convex, a
locally optimal solution is thus globally optimal. The optimal
solution can be found by solving its K.K.T. conditions [23],
given by:

∂Li(T̃i, α
(k)
i , γi)

∂T̃
(k)∗
i

=
∂R

(k)
i

∂T̃
(k)∗
i

−A
(k)
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(k)
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(k)
i + γi)T̃

(k)
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(30)

The Lagrangian function of the network optimization problem
(6) is:

L(T̃, α
(k)
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=
∑
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(31)

where T̃
def
=
⋃
i

T̃i is the set of precoding matrices over all users

and frequency bands.
All of the stationary or locally optimal points of the network

problem must satisfy the its K.K.T. conditions:
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By comparing (30) and (32), we notice that if the achieved
NE meets the K.K.T conditions of the social optimization
problem (6) (necessary conditions), the following equality must
hold:

−A
(k)
i T̃

(k)
i =

∑
j∈ΦN\{i}

∂R
(k)
j

∂T̃
(k)∗
i

. (33)

To compute
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, recall (2) and note that:

R
(k)
j = log det(C

(k)
d(j)+H

(k)
d(j),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(j),j)−log det(C

(k)
d(j))

and

C
(k)
d(j) = I + H

(k)
d(j),iT̃

(k)
i T̃

(k)H
i H

(k)H
d(j),i

+
∑

v∈ΦN\{i,j}

H
(k)
d(j),vT̃

(k)
v T̃(k)H

v H
(k)H
d(j),v.

We have
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The last equality in (34) follows by applying the Woodbury
identity [27] to (C

(k)
d(j) + H

(k)
d(j),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(j),j)

−1. Plug-
ging (34) into (33), we get (13). It is clear that the derived
A

(k)
i matrix is positive-semidefinite and if the pricing-factor

has the form (13), the achieved NE meets the K.K.T conditions
of problem (6) (sufficient condition). �

9


