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Abstract—We investigate the distributed spectrum manage-
ment problem in opportunistic TV White Space (TVWS) systems
using a game theoretical approach that accounts for adjacent-
channel interference and spatial reuse. TV Bands Devices
(TVBDs) compete to access idle TV channels and select channel
“blocks” that optimize an objective function. This function
provides a tradeoff between the achieved rate and a cost factor
that depends on the interference between TVBDs. We consider
practical cases where contiguous or non-contiguous channels can
be accessed by TVBDs, imposing realistic constraints on the max-
imum frequency span between the aggregated/bonded channels.
We show that under general conditions, the proposed TVWS
management games admit a potential function. Accordingly, a
“best response” strategy allows us to determine the spectrum
assignment of all players. This algorithm is shown to converge
in a few iterations to a Nash Equilibrium (NE). Furthermore,
we propose an effective algorithm based on Imitation dynamics,
where a TVBD probabilistically imitates successful selection
strategies of other TVBDs in order to improve its objective
function. Numerical results show that our game theoretical
framework provides a very effective tradeoff (close to optimal,
centralized spectrum allocations) between efficient TV spectrum
use and reduction of interference between TVBDs.

Index Terms—TV White Space, Spectrum Management, Chan-
nel Bonding/Aggregation, Game Theory, Nash Equilibrium.

I. INTRODUCTION

The radio frequency (RF) spectrum is a scarce resource that
has recently become particularly critical with the increased
wireless demand [1]. For this reason, the Federal Communica-
tions Commission (FCC) has recently allowed for opportunis-
tic access to the unused spectrum in the TV bands (also called
“white space”). With opportunistic access, however, there is
a need to deploy enhanced channel allocation and power
control techniques [2], [3], [4], [5], [6] to mitigate interference,
including Adjacent-Channel Interference (ACI) [7], [8]. TV
White Space (TVWS) spectrum access is often investigated
without taking into account ACI between the transmissions of
TV Bands Devices (TVBDs) and licensed TV stations. Guard
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Bands (GBs) can be used to protect data transmissions and
mitigate the ACI problem.

In this work, we consider a spectrum database that is ad-
ministrated by a Database Operator (DO), and an opportunistic
secondary system, in which every TVBD is equipped with
a single antenna that can be tuned to a subset of licensed
channels. This can be done, for example, through adaptive
channel aggregation or bonding techniques [9], [10], [11].
We take into account practical constraints on hardware and
aggregation overhead, which are translated into a maximum
allowable span (dmax) between the two farthest channels cho-
sen for aggregation by the TVBD. Furthermore, we accurately
model spatial reuse and interference among TVBDs, and we
consider both static and dynamic scenarios, where TVBDs
move around in their environment.

Given the set of channels occupied by licensed TV stations,
we assume that the DO first adds GBs to protect ongoing
TV transmissions, and then provides the set of idle channels
and guard bands to unlicensed TVBDs. According to the FCC
specifications [12], [13], each TVBD must contact the DO
to obtain the list of idle TV channels and then decide which
ones to use in order to maximize its own performance (which
can be expressed as a function of interference/congestion).
If multiple TVBDs are located in the same area, they will
receive the same channel occupancy information, and hence
they will likely interfere with each other. Game theory is
a natural framework to address the conflicts between such
self-interested devices (or players), and the Nash Equilibrium
(NE) is a well-suited concept to characterize the system-wide
equilibrium conditions.

In [14], the authors conducted a game theoretic analysis
of a distributed spectrum sharing scheme with a geo-location
database. They modeled the channel selection problem among
Access Points (APs) as a distributed channel selection game
and proposed a state-based game framework to model the
distributed association of secondary users to APs, taking into
account the cost of mobility. Two pricing schemes (registration
and service plans) for TVWS database were proposed in [15].
The DO offers the two schemes in order to maximize its ben-
efit (the payment received from all Secondary Users, SUs).
Then, SUs access idle TV channels so as to maximize their
utility, expressed as a function of the Shannon capacity. The
competition among SUs is modeled as a non-cooperative game
under both complete and incomplete information. In [16], the
authors investigated an oligopoly competitive TV white space
market, where multiple secondary network operators compete
to serve a common pool of secondary end-users by using TV
white space purchased from a spectrum broker.
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In [17], the authors proposed a non-cooperative TVWS
spectrum management game, where TVBDs choose a number
of idle blocks to optimize their objective function, expressed
in terms of a price set by the DO and a congestion-based cost.
However, in some cases the per-block channel assignment can
be very inefficient. For this reason, in this work we study and
formulate the TVWS spectrum management games on a per
channel basis.

Recently, optimal GB-aware (GBA) channel assignment
schemes were proposed in [18] and [8] for multi-channel
dynamic spectrum access networks. The authors in [18]
formulated and obtained optimal GBA channel assignment
for a single and multiple links, and they showed that the
proposed GBA channel assignment scheme achieves optimal
spectrum efficiency and supports channel bonding and ag-
gregation. However, the transmission rate was assumed to
be deterministically known. In [8], the authors considered a
more general case, where channel quality is uncertain, and to
account for this uncertainty, they developed stochastic GBA
channel assignment schemes.

Various recent works use auction design and apply game
theory to incentivize users to share their spectrum (e.g., [19]),
but they do not consider channel bonding as we do in our work.
Our key contributions to the TVWS spectrum management
problem are as follows: 1) we consider a general utility
function that adequately captures the interference among
TVBDs (guaranteeing a minimum data rate requirement), and
2) we incorporate channel bonding in our analysis, which is
an important consideration for supporting high-rate demands
in opportunistic TV whitespaces. This issue has not been
addressed in existing game theoretical analyses.

The main contributions of this paper can be summarized as
follows:

• We tackle the TV spectrum management problem both
in a fully distributed as well as centralized settings,
capturing various practical constraints. In particular, we
model the ACI and spatial reuse, and we assume that each
TVBD can choose a set of idle channels (not necessarily
contiguous) by implementing bonding and/or aggregation
techniques.

• We formulate the distributed TV spectrum management
problem using two non-cooperative spectrum manage-
ment games. In the first game, TVBDs can choose a set
of non-contiguous idle channels while satisfying some
hardware constraints (e.g., maximum frequency span). In
the second game, TVBDs can only choose contiguous
channels. In the two games, the TVBD attempts to
optimize its objective function.

• Under certain conditions, detailed in Section III, we
demonstrate that the non-cooperative games played by
TVBDs are exactly potential, and hence admit at least one
pure-strategy NE. We also show that the Best Response
algorithm converges in few iterations to a NE.

• We further propose an Imitation-based algorithm for
our games, where a TVBD can imitate with a certain
probability other (successful) TVBDs while selecting its

strategy, in order to improve its objective function.
• We compare our games to the centralized (Social Welfare)

solutions, which provide bounds on the Price of Anarchy
(PoA) [20]. Considering both static (with fixed transmis-
sion power) and dynamic TVWS scenarios (where users
are mobile), we perform extensive numerical analysis and
show that our games and solution approaches always pro-
vide a very efficient solution for managing TV resources
in a distributed manner.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model as well as the notation
and assumptions made in the paper. Section III describes the
game theoretic approaches for the TV spectrum management
problem, and demonstrates that under certain conditions our
games admit a potential function. Section IV presents the
two proposed distributed TVWS spectrum management algo-
rithms: the Best Response and the Imitation-based algorithms.
Numerical results are provided in Section V. Finally, conclud-
ing remarks and future research are discussed in Section VI.

II. SYSTEM MODEL

In this section, we describe the system model and the
notation used throughout the paper. We consider the TVWS
scenario in Figure 1, where a spectrum database is admin-
istrated by a third party DO. The DO serves a set N of
unlicensed TVBDs. Potentially available TV channels include
channels 2 to 51 (except channels 3, 4 and 37) in the case of
fixed TVBDs, or channels 21 to 51 (except channel 37) for
personal/portable TVBDs [12], [13].

Following the FCC’s 3rd MO&O [13], we remark that
“fixed devices may operate only on vacant TV channels
that are not adjacent to occupied TV channels, while per-
sonal/portable devices may operate adjacent to occupied chan-
nels if their maximum EIRP is reduced to no more than 40
mWatt (instead of 100 mWatt EIRP)”. Furthermore, TVBDs
must incorporate a geo-location capability and a means to
access the database to retrieve a list of idle TV channels that
may be used at a given location [12], [13]. They use a fixed
transmission power, i.e., power control is not applied. TVBDs
may also perform spectrum sensing to determine the relative
utilization of a given channel. Therefore, in the rest of the
paper, we assume that the DO first provides all TVBDs with
the set of idle, guard band, and occupied channels. Based
on such information, each TVBD i chooses at most nmax
idle channels so as to optimize its objective function. Note
that if the TVBD chooses non-contiguous idle channels, it is
necessary to guarantee that the distance between the chosen
channels does not exceed a given value dmax, determined by
hardware constraints and aggregation overhead.

We assume that TVBDs are located in the same geograph-
ical area, and therefore they perceive the same TV spectrum
status. LetM denote the set of idle TV channels and B the TV
channel bandwidth in MHz (same for all channels). Figure 2
illustrates an example. We classify channels into idle, busy,
and guard band channels. In Figure 2, channels {8, 10, 16, 17}
are busy and channels {7, 9, 11, 15, 18} are guard bands. Thus,
M = {5, 6, 12, 13, 14, 19, 20, 21, 22}.
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Fig. 1: A TV White Space scenario composed of a set of TVBDs
and a TV/white space Database operated by a third-party Database
Operator (DO). The DO receives the TVBDs’ locations and then
provides them with the set of idle TV channels.

Let di be the rate demand (in Mbps) required by TVBD i,
and let rj be the maximum data rate that can be supported by
TV channel j. In fact, rj can be deterministic (ideal channel
quality) or random if we assume that channel quality varies
due to multi-path fading and shadowing, as well as due to
the unpredictability of TVBDs activities. Note that under poor
channel conditions, we expect that our games will allocate
more channels to TVBDs to guarantee their minimum rate
demands.

Fig. 2: Example illustrating idle, busy, and guard band channels in
the TV spectrum. The set of idle TV channels is given as M =
{5, 6, 12, 13, 14, 19, 20, 21, 22}.

III. GAME THEORETIC TVWS SPECTRUM MANAGEMENT

We address the TVWS spectrum management problem in
a fully distributed fashion using a game theoretic approach.
Given the spectrum status that is provided by the DO, each
TVBD locally selects a set of idle channels (at most nmax)
for its communications so as to optimize an objective function
(III-A), which is related to both the utility perceived by using
the chosen channels and a cost term, expressed as a function
of the experienced interference.

We study and compare two variants of the TVWS spectrum
management game:

• Game G1 (Channel Aggregation-based TVWS Spectrum
Management, III-B): Given the spectrum status, TVBDs
play the game choosing at most nmax idle channels,
which are not necessarily contiguous. However, the
chosen idle channels must be separated by no more
than dmax channels. This feature is used to take into
account hardware constraints and the cost of aggregating
distant channels.

• Game G2 (Channel Bonding-based TVWS Spectrum
Management, III-C): Given the spectrum status, TVBDs
play the game choosing at most nmax contiguous idle
channels. This condition is used to minimize the sys-
tem complexity (aggregation overhead, hardware costs),
guaranteeing a fair access to TVWS, independent of rate
demands.

Hereafter, we elaborate on G1 and G2, considering the example
in Figure 2. We focus on channels 5 to 18, for simplicity. Ac-
cording to G1, if the TVBD can choose at most nmax = 2 idle
channels separated by a distance of at most dmax = 6, then
its possible choices are: {5, 6}, {6, 12}, {12, 13}, {12, 14},
and {13, 14}. On the other hand, in G2, if the TVBD can
choose at most nmax = 2 contiguous idle channels, then it
has the following alternatives: {5, 6}, {12, 13}, and {13, 14},
besides choosing each of these channels separately. Of course,
the strategy space of the TVBD in G1 is in general larger than
that of G2.

Finally, we demonstrate that both games G1 and G2 exhibit
desirable properties since they are potential (see Appendix A),
and possess at least one pure-strategy Nash Equilibrium (NE).
Hence, a Best Response algorithm can be used to converge to
a NE.

TABLE I: Basic Notation

N Set of TV Bands Devices (TVBDs)
M Set of idle TV channels
B Bandwidth of each TV channel
rj Rate (Mbps) supported by TV channel j
αj , βj , γj Channel j-specific parameters
δij TVBD i-specific parameter on channel j
e
(j)
ki Interference parameter between TVBDs k and i

on channel j
di Minimum rate demand (Mbps) of TVBD i
dmax Maximum distance between chosen channels
nmax Per-TVBD maximum number of channels
xij Binary variable that indicates if TVBD i is

assigned to idle channel j

The basic notation used throughout the paper is summarized
in Table I. We define the binary decision variables xij∀i ∈ N
and ∀j ∈M as follows:

xij =

 1 if idle channel j is assigned to
TVBD i’s transmission

0 otherwise.

These variables represent the set of spectrum access strategies
of TVBD i, i.e., xi = {xi1, xi2, . . . , xi|M|}.

We denote by Ej the interference matrix associated with
idle channel j. Let e(j)ik be the (i, k)th element of Ej , the
interference parameter between TVBDs i and k on channel j.
Note that Ej needs not be symmetric. More specifically, e(j)ik ,
for i, k ∈ N and j ∈M, is defined as follows:

e
(j)
ik =

 1 if TVBD i interferes with TVBD k on
channel j

0 otherwise.
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A. Objective Function

We now introduce the objective function optimized by
each TVBD. We begin by illustrating the cost function Ji of
TVBD i,∀i ∈ N , which represents a congestion cost that
the device incurs due to its interference on other devices that
operate on the same channel j. Ji is given by:

Ji =
∑
j∈M

rjxij · [αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj ]. (1)

where the coefficients αj and γj are two positive numbers that
model the overhead caused by choosing a wireless channel j,
and βj is a positive integer greater than or equal to 1 (the
larger is βj , the higher is the impact of interference among
TVBDs).

The above cost function well captures the network conges-
tion level and it is commonly used in the literature [2], [4].
More specifically, for each channel j we consider an increasing
and convex function of the form:

αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj (2)

where rjxkj is the traffic of TVBD k over channel j.
We observe that (2) represents the per traffic unit congestion

cost experienced by the TVBD on a single channel. Therefore,
the total cost incurred by device i due to the overall network
congestion is obtained by summing the cost over all channels.
Ji represents the penalty that TVBD i pays due to inter-

ference. It is monotone in the number of TVBDs sharing
the same band, and is used to incite them to choose idle
or underutilized bands. In other words, this cost is naturally
proposed to discourage TVBDs from choosing “crowded”
channels, thus reducing the interference. Hence, each TVBD i
is better off minimizing Ji.

In this work, we focus on TVBDs characterized by a
minimum data rate requirement (di) and elastic traffic: the
goal of each device is to maximize the difference between its
utility (Ui) and cost (Ji). We consider an affine utility function
of the form:

Ui =
∑
j∈M

δijrjxij (3)

where δij is a positive parameter that represents the signifi-
cance (priority) of channel j for TVBD i. Hence, the objective
function that (elastic) TVBD i aims to maximize is given by:

OFi =Ui − Ji (4)

=
∑
j∈M

δijrjxij−∑
j∈M

rjxij · [αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj ].

It is worth noting that there is a tradeoff between minimizing
the number of chosen idle channels and minimizing the
interference with other TVBDs.

Having defined the objective function, we now formalize
games G1 and G2.

B. Game G1: Channel Aggregation-based TVWS Spectrum
Management

In G1 each player i aims at maximizing OFi in (4) subject
to the following constraints:

Rate demand constraint:∑
j∈M

rjxij ≥ di (5)

Maximum number of channels constraint (at most nmax
channels can be chosen by a TVBD):∑

j∈M
xij ≤ nmax (6)

Maximum frequency-separation constraint (which guarantees
that the maximum separation between any chosen channels j1
and j2 does not exceed dmax):

j1xij1 − j2xij2 ≤ dmax + (1− xij2) · |M|, (7)
∀j1, j2 ∈M : j1 > j2

Integrality constraints:

xij ∈ {0, 1},∀j ∈M (8)

C. Game G2: Channel Bonding-based TVWS Spectrum Man-
agement

In G2 player i maximizes his objective function OFi subject
to constraints (5), (6), and (8) in G1. In addition, the following
single frequency block constraint (contiguous channels) is
imposed:

j1xij1 − j2xij2 ≤ nmax − 1 + (1− xij2)|M|, (9)
∀j1, j2 ∈M : j1 > j2

D. Potential Function and Existence of NE
We now demonstrate that under some conditions to be

specified later, games G1 and G2 admit a potential func-
tion Φ. Indeed, if a potential function exists, these games are
potential [21], and possess at least one pure-strategy Nash
Equilibrium (NE). Hence, a Best Response algorithm can be
used to converge to a NE.

Because NE uniqueness in discrete games is generally hard
to prove, the BR algorithm performs like a local optimization
algorithm and the obtained solutions constitute local maxima.

Proposition III.1. Games G1 and G2 admit a potential func-
tion Φ, which is given by the following expression:

Φ =
∑
i∈N

[
Ui −

1

2
Ji
]

(10)

− 1

2

∑
i∈N

∑
j∈M

[
αjr

2
jx

2
ij + rjγjxij

]
.

Proof: See Appendix A.

IV. DISTRIBUTED TVWS SPECTRUM MANAGEMENT
ALGORITHMS

In this section, we first present two best response-based dy-
namics for both TVWS spectrum management games G1 and
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G2: a sequential dynamics, where players iteratively change
their strategy based on full information of all TVBDs’ choices,
and a Krasnoselskij-based scheme; with this latter, we model a
realistic situation in which, at each iteration, only a fraction of
players change their strategy. We further propose an imitation
algorithm which can be easily implemented in practice, since
it needs (much) less information than the best-response-based
schemes.

A. Best Response-based Distributed Spectrum Management
(BR-DSM) Algorithm

The best response of a player (or a TVBD) is an action
(i.e., a set of idle channels) that maximizes its objective
function OFi for a given action tuple of the other players,
subject to constraints (5)-(8) for G1, and to constraints (5),
(6), (8) and (9) for G2.

Definition IV.1. BRi is a best response for player i to x−i if

BRi = argmaxxi∈XiOFi(xi, x−i), (11)
s.t. constraints of G1/G2.

The same procedure is repeated for all TVBDs in the
network, and such procedure converges iteratively to a Nash
equilibrium of our games.

A formal description of BR-DSM is illustrated in Algo-
rithm 1. Each player sequentially updates its strategy based on
the choices of all other players. The procedure stops when no
player can improve its own utility, so that a Nash equilibrium
has been reached. We underline that, since we demonstrated
that our games are exactly potential, BR-DSM is guaranteed
to converge to a NE point.

Algorithm 1: BR-DSM
Input : N ,M,di, r, B,x0

Output: xNE ,OFNE , niter

1 Initialization:
xt = x0,OF t = OF (x0),OF t−1 = 0, niter = 0, t = 0;

2 while ∆OF 6= 0 (NE solution is not reached) do
3 t = t+ 1;
4 foreach i ∈ N do
5 niter = niter + 1;
6 BRi = argmaxxiOFi(xi,t, x−i,t), s.t. constraints of

G1/G2;
7 OFt(i) = OF (BRi, x−i,t);
8 xt = {BRi, x−i,t};
9 end

10 ∆OF = OF t −OF t−1;
11 end
12 xNE = xt,OFNE = OF t.

B. Krasnoselskij-based Distributed Spectrum Management
(K-DSM) Algorithm

According to BR-DSM, all TVBDs change sequentially
their strategies at each iteration of the algorithm when de-
termining the NE solution. Nonetheless, assuming that all

devices change simultaneously their strategies is not a realistic
representation of the market, as players may obtain side-
information and make their decisions at different time instants.
Therefore, we propose to use the Krasnoselskij algorithm [22],
[23], where only a fraction of TVBDs change their strategies
at the same time at each iteration to improve their objective
function and, eventually, converge to a NE of the TVWS
spectrum management game. A formal description of K-
DSM can be straightforwardly deduced from Algorithm 1 by
considering at step 4 only a subset of TVBDs N (i.e., λ%
of the |N | players, randomly chosen, who may change their
strategies at each iteration). This can be easily implemented
in practice in a fully distributed fashion. We do that by letting
each TVBD extract a random value (for example, uniformly
in [0, 1]), and then decide to update its strategy if the extracted
value is less than λ/100. Note that we evaluated numerically
the impact of different probability distributions of the random
value, but no change in the results was observed since all
players, sooner or later, update their strategy (as indeed will
happen with the distributed random extraction mechanism we
described above). We observed the convergence to the same
Nash Equilibrium in all considered scenarios and in all cases.

C. Imitation-based Distributed Spectrum Management (IM-
DSM) Algorithm

Finally, we present hereafter a distributed spectrum man-
agement algorithm based on imitation dynamics, a behavior
rule widely applied in human societies consisting of imitating
successful behavior. This type of technique has been used, for
example, in [24], [25] to tackle the distributed spectrum access
problem in the context of cognitive radio networks, and has
the appealing property of being easily implementable in our
scenario.

Algorithm 2 presents our proposed spectrum management
policy based on the proportional imitation rule, named IM-
DSM (Imitation-based Distributed Spectrum Management)
Algorithm. The basic idea of IM-DSM is as follows:

• At each iteration t, each TVBD (say i) randomly selects
another TVBD (say k 6= i);

• if the objective function value OF at t − 1 of the
selected TVBD (OFt−1,k) is higher than its own objective
function value at t−1 (OFt−1,i), plus δ, a small constant1,
TVBD i imitates the strategy of k at iteration t with a
probability q proportional to the objective function values
difference (of i and k), with a coefficient σ representing
the imitation factor.

We observe that this algorithm exploits a limited informa-
tion with respect to the best response dynamics, since it is
based exclusively on the knowledge of the utility obtained in
the previous step by the chosen player.

We consider different variants of this algorithm. In particu-
lar:

1This permits to avoid so-called ping-pong effects. In this regard, the
algorithm converges towards a δ−NE, but since δ is very small, such value
is very close to the NE. In such algorithms, σ is also set to a small value to
achieve stability.
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Algorithm 2: IM-DSM
Input : N ,M,di, r, B,x0, σ, δ
Output: xNE ,OFNE , niter

1 Initialization:
xt = x0,OF t = OF (x0),OF t−1 = 0, niter = 0, t = 0;

2 while ∆OF 6= 0 (NE solution is not reached) do
3 t = t+ 1;
4 foreach i ∈ N do
5 niter = niter + 1;
6 Randomly select a TVBD k (k 6= i);
7 if OFt−1,i − δ < OFt−1,k then
8 Migrate to the nmax idle channels chosen by TVBD k

at iteration t− 1 (xi,t = xk,t−1) with probability
q = σ(OFt−1,k −OFt−1,i);

9 OFt(i) = OF (xi,t, x−i,t−1);
10 end
11 end
12 ∆OF = OF t −OF t−1;
13 end
14 xNE = xt,OFNE = OF t.

• i) TVBD i can choose the player to imitate (k) only
among the set of those that were transmitting at time
t−1 on the same channel (so that only local interactions
can be exploited among TVBDs);

• ii) the DO broadcasts, at the end of each epoch (say, at the
end of slot t−1) the occupancy on each channel c ∈M,
so that each player can indeed switch (probabilistically,
and proportionally to the utility gain, as explained before)
to the idle channels that guaranteed the maximum utility
in the previous iteration.

V. NUMERICAL RESULTS

In this section, we measure the sensitivity of our game
theoretic approaches to different key parameters that charac-
terize TVWS systems, like the number of TVBDs and idle
TV channels, the interference between TVBDs as well as the
rate demands, and finally of parameters dmax and λ, in several
network scenarios.

We first describe the simulation setup (Sec. V-A), and
then we analyze and discuss numerical results (Sec. V-B),
focusing on both static (Sec. V-B1) and dynamic scenarios
(Sec. V-B2); finally, we characterize the efficiency of the
equilibrium achieved in our proposed games through the
determination of the Price of Anarchy (Sec. V-B3).

The performance metrics we consider are (1) the TVBD
objective function (OFi = Ui − Ji) for both games G1 and
G2, and (2) the Price of Anarchy (PoA), which is defined in
our context as the ratio between the utility of the socially
optimal solution and that of the worst Nash equilibrium [20].
The solutions of the proposed games are computed considering
several state-of-the-art algorithms. These algorithms include:
(1) the classic Best Response algorithm in its sequential and
distributed version used in several papers like [2], [14], [16],
(2) the Krasnoselskij-based algorithm, which was adopted
in [23] as well as other works, and (3) the imitation algorithm
used in [24], [25].

A. Simulation Setup

In our simulations, we consider a TV white space system
composed of M TV channels and N TVBDs randomly

Fig. 3: Set of TV channels ({21, . . . , 51} \ {37}) considered in the
numerical analysis.

scattered over a 1500 meter × 1500 meter area. The bandwidth
of each TV channel is 6 MHz, and the rate rj supported by
TV channel j can be either deterministic or vary according to
a random distribution.

We simulate both static and dynamic TVWS scenarios.
In static scenarios TVBDs are fixed, while in the dynamic
case TVBDs are mobile (i.e., personal or portable unlicensed
devices). For comparison purposes and to be conform with
FCC specifications [12], [13], we assume that fixed and
portable unlicensed devices have the same transmission power,
i.e., 20 dBm, and share the same TV spectrum bands (i.e.,
the set of TV channels is M = {21, . . . , 51} \ {37}), unless
otherwise stated. Figure 3 illustrates an example of the TV
spectrum that we consider in our numerical analysis. We
further assume a free-space path loss model between any
two unlicensed devices. Default values of key simulation
parameters are shown in Table II.

TABLE II: Default values of key simulation parameters

|N | ∈ [1, 20]
Trans. Power [12], [13] 100 mWatt (20 dBm)
B [12], [13] 6 MHz
rj 10 Mbps
αj , βj , γj 1, 1, 0
δij 100
di ∈ [20, 30] Mbps
dmax, nmax 10, 3
λ [23] 20%

All the results reported hereafter are the Nash equilibria
and optimal solutions of the considered scenarios obtained,
respectively, by implementing our TVWS spectrum manage-
ment algorithms in Matlab and OPL (Optimization Program-
ming Language), and solving optimization problems with
CPLEX [26].

B. Performance Evaluation

In the following, we measure the effect of the number
of TVBDs, the number of available idle TV channels, rate
demands as well as the dmax and λ parameters on the
performance of games G1 and G2. We first discuss the results
obtained in the static scenario and then those of the dynamic
scenario, where TVBDs are personal or portable. Finally, we
characterize the efficiency of the equilibria reached by our
proposed algorithms by measuring the Price of Anarchy.

6



Acronym Description
SBR-DSM Sequential Best Response-based DSM
BR-DSM Best Response-based DSM
K-DSM Krasnoselskij-based DSM
IM-DSM Imitation-based DSM

TABLE III: Summary of the Distributed Spectrum Manage-
ment (DSM) algorithms considered in our study.

1) Static TVWS scenario: In the static TVWS scenario,
we fix the transmission power to 20 dBm. Parameters αj , βj ,
γj , and δij are set to 1, 1, 0, and 100, respectively, for all
i ∈ N and channels j ∈ M, dmax = 10, nmax = 3 and
λ = 0.2 (i.e., 20% of players change strategy in each iteration
of the Krasnoselskij-based DSM algorithm, K-DSM).

Note that the SBR-DSM algorithm (sequential best response
dynamics) is guaranteed to converge in both games G1 and G2
in a finite number of iterations, due to the fact that we
demonstrated that these games are potential. In practice we
observed that, in all the scenarios we simulated and for all
parameters settings, the distributed algorithms we considered
in this paper always converge in few iterations to equilibrium
conditions (whose quality we will assess hereafter using the
Price of Anarchy index). More specifically we observed that,
in the worst case, up to 5 iterations are needed for a TVBD
to converge to a stable point, while in average less than 3
iterations are sufficient.

We vary the number of TVBDs in the range [1, 20] to
show the impact of this parameter on the interference among
the devices. We assume that TVBDs rate demands di are
homogeneous (either equal to 20 or 30 Mb/s), and we consider
two cases for the set of idle channels: case (i) M consists
of all idle channels of the spectrum depicted in Figure 3,
while in case (ii) M = {21, 22, 28, 29, 30, 35, 36, 38, 39}.
The aim behind considering case (ii) is to study the system’s
behavior when a smaller number of idle channels is available
for TVBDs, thus increasing the interference.

Figure 4(a) shows the average value of the objective func-
tion obtained by the proposed algorithms (SBR-DSM, BR-
DSM, K-DSM and IM-DSM, as summarized in Table III) in
the context of games G1 (solid lines in the figure) and G2
(dotted lines) as a function of the total number of players
(unlicensed devices), for di equal to 20 Mb/s, considering the
entire set of idle channels (case (i)). Similarly, Figure 4(b)
shows the same performance measure when a subset of idle
channels is available (case (ii)).

Several key findings can be drawn from the observation of
these results, namely in terms of the impact of the number of
TVBDs, idle channels and rate demands, which we discuss in
the following.

a) Effect of the number of TVBDs: As expected, it can
be seen in Figures 4(a) and 4(b) that the objective function
decreases when increasing the number of players, and this is
in fact due to the increase in the interference between TVBDs.
It can also be observed that SBR-DSM and K-DSM have
very similar trends for both games, and they exhibit better
performance values than IM-DSM and BR-DSM, especially
for a number of players higher than 5. SBR-DSM shows

the best performance among all the distributed algorithms.
In fact, in the sequential version of the Best Response, at
each iteration of the algorithm, each device chooses the best
channels knowing those chosen by the previous players in the
same round or iteration. Therefore, since it relies on a most
up-to-date information, it is not surprising that the sequential
BR algorithm exhibits the best performance.

b) Effect of the number of idle TV channels: We now
investigate the impact of the number of available idle channels
on the performance of the proposed games and distributed
algorithms. We observe from Figure 4(a) and Figure 4(b) that a
player gets, on average, in case (ii) an objective function value
lower than that perceived in case (i). For example, under SBR-
DSM and K-DSM, when game G2 is played by 20 TVBDs,
each TVBD achieves an objective function value under case (i)
that is, on average, 1.3 times higher than the one obtained
under case (ii). This is due to the fact that in case (i) the set of
strategies is larger than the one in case (ii) and hence TVBDs
can better optimize their performance in the former case. This
particularly applies to SBR-DSM and K-DSM. However, IM-
DSM exhibits the same trend in the two cases, and this can
be explained by the fact that the imitation algorithm is more
sensible to the number of players than the size of the set of
strategies that players can explore.

c) Effect of traffic distributions and rate demands:
We measure the impact of the traffic pattern by considering
different realistic distributions for the traffic demand, as done
in [16]. More specifically, we consider: a) deterministic traffic
with rate of 20 Mb/s, b) uniformly distributed traffic with rate
between 10 and 30 Mb/s, and c) truncated normally distributed
traffic with mean and standard deviation of 20 and 5 Mb/s,
respectively. The average value of the objective function versus
the number of TVBDs for uniformly distributed traffic2 is
reported in Figure 5 for all the algorithms presented in the
paper. By comparing Figures 4 and 5, it can be observed that
the impact of different distributions is limited (i.e., practically
almost negligible) in case (i), where all channels are used
(Figure 4(a) and 5(a)). This impact becomes slightly more
noticeable in case (ii), where fewer channels are considered
(Figure 4(b) and 5(b)) and the number of TVBDs competing
to access these channels is large. Moreover, the number of
iterations required to reach a Nash Equilibrium (NE) in the
deterministic traffic case as well as when the traffic pattern
varies according to a normal/uniform distribution are very
similar, i.e., less than 3 iterations, on average, and up to 5 in
the worst case. Therefore, we can conclude that our proposed
algorithms are quite robust against different traffic patterns.

We further evaluate the effect of the rate demand on the
proposed algorithms, considering two values of di (20 Mb/s
and 30 Mb/s). Since the maximum number of channels that
can be chosen by a player, nmax, is fixed to 3, we observe
that the impact of di is quite limited, and this is especially
true when a small number of players is involved. However,
the impact of di is greater with larger values of nmax.

2Note that we obtain similar results when we assume that the traffic follows
a truncated normal distribution.
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(a) Deterministic traffic, dmax=10, case (i)
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Fig. 4: Static TVWS scenario: Average objective function values (the players’ total utility) as a function of the number of TVBDs ([1, 20]),
and for two different sets of available idle channels (traffic demand di = 20 Mb/s).
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(a) Uniform dist., dmax=10, case (i)
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Fig. 5: Static TVWS scenario: Average objective function values (the players’ total utility) versus the number of TVBDs ([1, 20]), and for
two different sets of available idle channels (uniformly distributed traffic with rate between 10 and 30 Mb/s).

d) Effect of parameters dmax and λ : Finally, we evalu-
ate the effect of parameters λ and dmax on the performance of
our proposed distributed algorithms. Recall that λ represents
the percentage of players that change strategy in each iteration
of the K-DSM algorithm, and dmax is the maximum allowed
frequency span between the channels, specifically, between the
first and the last channel chosen by a TVBD. Therefore, we
consider a TVWS scenario varying the number of TVBDs
in the range [1, 20], fixing the rate demand to 20 Mb/s and
considering different values of λ as well as of dmax.

Figures 6(a) and 6(b) illustrate the average value of the
objective function obtained by K-DSM in the channel aggre-
gation as well as in the channel bonding game as a function
of the number of TVBDs, considering the set of idle channels
M depicted in Figure 3, for three different values of λ:
10%, 20% and 100% (this latter corresponds to the Best
Response algorithm, BR-DSM) and dmax equal to 5 and 10,
respectively. It can be observed that K-DSM exhibits better
performance than BR-DSM in both games when λ is equal
to 10% and 20%. The same behavior is observed with the two
proposed games. In fact, when a small fraction of players (10-
20%) change their strategy (the upper curves), the achieved
equilibria are significantly more efficient than those obtained
when all players adapt their choices simultaneously (the lower
curves in both Figures 6, i.e. λ = 100%). The gap between

K-DSM and BR-DSM increases when increasing the number
of players. For instance, when this latter is equal to 20 and
dmax = 5, the percentage gap between K-DSM and BR-DSM
is approximately 71% for λ = 20% and 57% for λ = 10%.
Furthermore, the channel aggregation game (bold lines in
Figures 6) outperforms the channel bonding game (dashed
lines), and the gap between the average objective function
values is more evident when the maximum frequency span
doubles (Figure 6(b)). On the other hand, the performance
of the channel aggregation game improves when increasing
dmax. This can be explained by the fact that each TVBD has
a larger spectrum to explore when dmax = 10 and hence can
likely better optimize its objective function.

Finally, Figure 7 shows the impact of the parameter dmax
on the objective function perceived by players of the channel
aggregation game for two values of the maximum frequency
span (viz., 5 and 10). It can be seen that, under all the proposed
algorithms, with dmax = 10 the players obtain a utility which
is higher than the one obtained with dmax = 5. As argued
previously, when the frequency spectrum is large, the players
succeed in ameliorating their outcomes at the cost of a larger
space to explore. In particular, for K-DSM, the percentage gap
in the outcome is equal to 15% when the number of devices
is equal to 20.
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Fig. 6: Average objective function values as a function of the number of TVBDs ([1, 20]), available idle channels ({21, . . . , 51} \ {37})
and for three different λ values, viz., 10%, 20% and 100% (this latter corresponds to the Best Response algorithm, BR-DSM).
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Fig. 7: Channel Aggregation Game - Static TVWS scenario: Average
objective function values as a function of the number of TVBDs
([1, 20]), and for two different maximum frequency spans (viz., 5
and 10) and λ=20%.

2) Dynamic TVWS scenario: In the dynamic TVWS
scenario, we simulate TVBDs’ mobility using the random
way-point model [27], [28], as commonly assumed in the
literature. In particular, we divide the operating time of the
system into 10 consecutive time epochs, and for each epoch
we compute the random displacements of all mobile devices
according to a displacement vector. The mobile device speed
is set to 1 m/s, while the time epoch duration is fixed to
10 s. Indeed, mobility can generate in each epoch some
modifications in the interference matrix among devices, and
as a consequence TVBDs can change strategies from one time
epoch to another, if necessary, to improve their expected utility
values.

Figure 8 illustrates an example of a dynamic TVWS sce-
nario where the positions of 20 mobile TVBDs are generated,
according to the random way-point model, on a square area
of 500×500 m2 at time epochs 1, 5 and 10. For the sake of
clarity, in this figure we show only 20 devices and 3 out of
10 time epochs.

Figures 9(a) and 9(b) show the average value of the ob-
jective function of all devices, considering, respectively, two
different sets of idle channels (case (i) and case (ii)) and
fixing the rate demand to 20 Mb/s. In this dynamic scenario,
the plotted values are obtained by averaging over all time
epochs. The results measured in the dynamic TVWS scenario

confirm the trends observed in the static scenario. Specifically,
the interference can be reduced by increasing the number
of idle channels and decreasing the number of TVBDs (or
equivalently, by increasing the spatial reuse). Finally, we can
observe that in the considered scenarios the density of TVBDs
affects the network performance more than mobility, since all
proposed algorithms allocate idle TV channels on per-time-
epoch basis, taking into account the interference matrix and
the congestion measured in each epoch.

3) Efficiency of the Nash equilibria - Price of Anarchy:
We now study the efficiency of the Nash equilibria reached in
our proposed games by comparing them to the socially optimal
solutions, through the determination of the PoA.

Socially optimal solutions maximize the sum of all TVBDs’
objective functions, i.e., they maximize

∑
i∈N {OFi = Ui −

Ji}, subject to constraints (5)-(8) for game G1 and con-
straints (5)-(9) for G2, ∀i ∈ N , where Ji and Ui are given
in (1) and (3), respectively. The PoA is defined as the ratio
between the objective function value of this solution and that
of the worst NE.

We determine hereafter the PoA for static and dynamic
TVWS scenarios. The parameters settings are the same as
described in the previous sections.

0 100 200 300 400 500
0

100

200

300

400

500

 1

 2
 3

 4

 5
 6

 7
 8

 9

10

11

12

13

14

15

16

17

18

19

20

 1

 2

 3

 4

 5
 6

 7 8

 9

10

11

12

13

14

15

16

17

18

19

20

 1

 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

 

 

Time ep. 1
Time ep. 5
Time ep. 10

Fig. 8: An example of a dynamic TVWS scenario where the positions
of 20 mobile TVBDs are generated on a square area of 500×500 m2

for time epochs 1, 5 and 10.

9



1 5 10 15 20
1000

1500

2000

2500

2800

Number of TVBDs

O
F

i

 

 

G
1
−IM−DSM

G
1
−BR−DSM

G
1
−K−DSM

G
1
−SBR−DSM

G
2
−IM−DSM

G
2
−BR−DSM

G
2
−K−DSM

G
2
−SBR−DSM

(a) dmax=10, case (i)

1 5 10 15 20
1000

1500

2000

2500

2800

Number of TVBDs

O
F

i

 

 

G
1
−IM−DSM

G
1
−BR−DSM

G
1
−K−DSM

G
1
−SBR−DSM

G
2
−IM−DSM

G
2
−BR−DSM

G
2
−K−DSM

G
2
−SBR−DSM

(b) dmax=10, case (ii)

Fig. 9: Dynamic TVWS scenario: Average objective function values as a function of the number of TVBDs ([1, 20]), and for two different
sets of available idle channels.
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Fig. 10: Static TVWS scenario: Average PoA values as a function of the number of TVBDs ([1, 20]), and for two different sets of available
idle channels (traffic demand di = 20 Mb/s).

Figure 10(a) shows the average value of the PoA for static
TVWS scenarios measured under the Best Response, the Kras-
noselskij, and the Imitation-based algorithms implementing
the two proposed games, while varying the number of fixed
devices in the range [1, 20] and considering case (i). Similarly,
Figure 10(b) shows the same performance metric measured
under case (ii). As expected, the PoA increases with the
number of TVBDs. Under SBR-DSM and K-DSM, the PoA is
very small and remains close to 1. On the other hand, with the
Imitation and the BR algorithms, the PoA is small when the
number of devices is small (less than 5 devices) and then takes
larger values (by increasing quasi-linearly) when the number
of TVBDs increases.

Conversely, Figure 11(a) shows the average value of the
PoA obtained with both games G1 and G2 in the dynamic
TVWS scenarios as a function of the number of TVBDs,
considering all idle channels (case (i)) and fixing the rate
demand to 20 Mb/s. Figure 11(b) shows the PoA value
focusing only on the Sequential Best Response algorithm.
It can be clearly seen that the PoA slightly increases when
increasing the number of TVBDs, while remaining very small
(below 1.025 in the case of 20 players). These results are
completely in line with those observed in the static scenarios.
As argued previously, the impact of the density of TVBDs is
stronger than that of mobility, and therefore the PoA obtained

in the dynamic scenarios confirms our findings for the static
ones. Finally, in all the considered scenarios, and for all
parameters’ settings, the PoA remains low (it is, in fact, always
lower than 2). This trend is indeed due to the good properties
provided by the proposed TVBD’s objective function and
confirms that our distributed, game theoretic approaches can
achieve good results that are close to the optimum.

Remarks:

• The proposed algorithms do not involve complicated
operations and their iteration duration (i.e., the rate at
which these algorithms are triggered) can be configured
(i.e., decreased) to reduce energy consumption. Their
signalling overhead is also quite low and the number of
iterations is small (less than 3 iterations, on average).
Thus, the signalling overhead and time delay remain
significantly small compared with centralized or global
channel allocation approaches.

• To accommodate traffic changes, one solution would be
to assume that TVBD traffic varies according to a known
probability distribution (as often done in the literature).
Then, we can discretize this information on a finite
number of scenarios and divide the operation time of the
system into a number of sequential time slots. After that,
we can develop some (distributed) stochastic optimization
approaches to address this channel allocation problem
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Fig. 11: Dynamic TVWS scenario: Average PoA values as a function of the number of TVBDs ([1, 20]), and for two different sets of
available idle channels.

under traffic uncertainty. At this point, and at each time
slot, we can execute our proposed algorithms, which
exhibit a very short convergence time (few iterations
on average, as discussed before), and allocate in a fast
manner the necessary number of channels to TVBDs to
accommodate traffic changes.

VI. CONCLUSION

In this paper we addressed the TV spectrum management
problem considering non cooperative games among TV bands
devices (fixed and portable), taking into accurate account users
mobility and spatial reuse, along with Adjacent-Channel Inter-
ference between different devices’ transmissions. We consid-
ered both practical cases where contiguous or non-contiguous
channels can be accessed by TVBDs, imposing realistic con-
straints like a maximum frequency span between the chosen
channels. To obtain efficient Nash equilibrium solutions, we
introduced a congestion cost function that aims at reducing
interference between unlicensed devices. We demonstrated
under specific conditions on cost function parameters that the
guard band-aware TVWS management game admits a poten-
tial function, and therefore we used a Best Response algorithm
to converge fast to Nash equilibrium points. Furthermore, we
proposed an effective algorithm based on Imitation dynamics,
where a TVBD probabilistically imitates successful selection
strategies of other TVBDs, in order to improve his objective
function.

We evaluated the performance of the proposed games
and algorithms considering both static and dynamic TVWS
scenarios (characterized by users’ mobility), illustrating their
sensitivity to different key parameters, including the number
of TVBDs, the number of available idle blocks, and the rate
demands, among others. Numerical results showed that the
proposed game theoretical approaches and algorithms perform
very well when the available TV resources are limited and
the number of TVBDs is high. In fact, they well approach
the performance obtained by a centralized scheme, where the
Database Operator collects TVBDs demands and allocates
the spectrum so as to maximize the social welfare (the total
utility experienced by all users). For these reasons, our game

theoretical framework provides a very effective tradeoff be-
tween efficient TV spectrum use and reduction of interference
between TVBDs.
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APPENDIX A
POTENTIAL FUNCTION AND EXISTENCE OF NE

We now demonstrate that under some conditions to be
specified later, games G1 and G2 admit a potential func-
tion Φ. Indeed, if a potential function exists, these games are
potential [21], and possess at least one pure-strategy Nash
Equilibrium (NE). Hence, a Best Response algorithm can be
used to converge to a NE.

Proposition A.1. Games G1 and G2 admit a potential func-
tion Φ, which is given by the following expression:

Φ =
∑
i∈N

[
Ui −

1

2
Ji
]

(12)

− 1

2

∑
i∈N

∑
j∈M

[
αjr

2
jx

2
ij + rjγjxij

]
.

Proof: Assume that βj = 1 and e(j)ki = e
(j)
ik ∀i, k ∈ N , j ∈M,

i.e., the interference between TVBDs is symmetric (a natural
assumption). Function Φ is a potential function if it satis-
fies the following condition for each player i, each multi-
strategy s = {s1, . . . , si, . . . , s|N |} = {si} ∪ {s−i}, and each
strategy vi 6= si:

Φ(si, s−i)− Φ(vi, s−i) = OFi(si, s−i)−OFi(vi, s−i). (13)

Let Φj and OFi,j be the potential function and TVBD i
objective function, respectively, for channel j. Hence, Φ =∑
j∈M Φj and OFi =

∑
j∈MOFi,j .

Consider Φj :

Φj(xij , x−ij) (14)

=
∑

k∈N :k 6=i

Uk,j(xkj) + Ui,j(xij)

− 1

2

∑
k∈N

rjxkj · [αj · (
∑
l∈N

rje
(j)
lk xlj) + γj ]

− 1

2

∑
k∈N

[αj(rjxkj)
2 + rjγjxkj ]

=
∑

k∈N :k 6=i

Uk,j(xkj) + Ui,j(xij)

−
αjr

2
j

2

{ ∑
k,l∈N :k,l 6=i

e
(j)
lk xljxkj

+
∑

k∈N :k 6=i

e
(j)
ik xijxkj +

∑
l∈N :l 6=i

e
(j)
li xljxij

+
∑

k∈N :k 6=i

2x2kj + 2x2ij

}
−

∑
k∈N :k 6=i

rjγjxkj − rjγjxij .

Since the interference between TVBDs is symmetric
(e(j)ki = e

(j)
ik , ∀i, k ∈ N , j ∈ M), we can further simplify

the expression of Φj :

Φj(xij , x−ij) (15)

=
∑

k∈N :k 6=i

Uk,j(xkj) + Ui,j(xij)

−
αjr

2
j

2

{ ∑
k,l∈N :k,l 6=i

e
(j)
lk xljxkj

+ 2
∑

k∈N :k 6=i

e
(j)
ki xijxkj +

∑
k∈N :k 6=i

2x2kj + 2x2ij

}
−

∑
k∈N :k 6=i

rjγjxkj − rjγjxij .

It is easy to verify that any unilateral deviation of TVBD i
on a channel j, which gives rise to a change in its objective
function, is exactly reflected in function Φj . In fact, the
following equality holds:

Φj(xij , x−ij)− Φj(yij , x−ij) (16)
= Ui,j(xij)− Ui,j(yij)
−
[
αjr

2
j (x

2
ij − y2ij)− rjγj(xij − yij)

]
−
( ∑
k∈N ,k 6=i

αjr
2
j e

(j)
ki xkj

)
(xij − yij)

= OFi,j(xij , x−ij)−OFi,j(yij , x−ij).

Hence, by summing up over all wireless channels j, we
prove that (13) and (14) hold, and that the TVWS spectrum
management games admit a potential function Φ.
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