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Abstract—Establishing communications in a dynamic spec-
trum access (DSA) network requires communicating nodes to
“rendezvous” before transmitting their data packets. Frequency
hopping (FH) provides an effective method for rendezvousing
without relying on a predetermined control channel. FH ren-
dezvous protocols have mainly targeted pairwise rendezvous,
using fixed (non-adaptive) FH sequences and assuming a ho-
mogeneous spectrum environment, i.e., all nodes perceive the
same spectrum opportunities. In this paper, we address these
limitations by developing three multicast rendezvous algorithms:
AMQFH, CMQFH, and nested-CMQFH. The three algorithms
are intended for asynchronous spectrum-heterogeneous DSA
networks. They provide different tradeoffs between speed and
robustness to node compromise. We use the uniform k-arbiter
and the Chinese remainder theorem (CRT) quorum systems to
design our multicast rendezvous algorithms. We also design two
“optimal” channel ordering mechanisms for channel sensing and
assignment, one for AMQFH and the other for CMQFH and
nested-CMQFH. Finally, we develop a proactive out-of-band
sensing based dynamic FH (DFH) algorithm for online adaptation
of the FH sequences used in the proposed rendezvous algorithms.
Extensive simulations are used to evaluate our algorithms.

Index Terms—Control channel, dynamic frequency hopping,
dynamic spectrum access, multicast rendezvous, quorum systems.

I. INTRODUCTION

Motivated by the need for more efficient utilization of

the licensed spectrum and facilitated by recent regulatory

policies [5], significant research has been conducted towards

developing cognitive radio (CR) technologies for dynamic

spectrum access (DSA) networks. CR devices utilize the

available spectrum in a dynamic and opportunistic fashion

without interfering with co-located primary users (PUs). The

communicating entities of an opportunistic CR network are

called secondary users (SUs).

Establishing a communication link in DSA networks re-

quires nodes to rendezvous for the purpose of exchanging

control information, such as common spectrum opportunities,

transmission parameters, topology changes, etc. In the absence

of centralized control, the rendezvous process needs to be car-

ried out in a distributed manner. To address this problem, many

existing MAC protocols for CR networks rely on a dedicated

global or group control channel. Presuming a common control

channel (CCC) surely simplifies the rendezvous process, but it

comes with two main drawbacks. First, a CCC can become a

network bottleneck, creating a single point of failure. Second,

PU dynamics and spectrum heterogeneity make it very difficult

to always maintain a single CCC (a.k.a. the coverage problem

[13]).

Frequency hopping (FH) provides an alternative method

for rendezvousing without relying on a dedicated CCC. Most

existing work on FH designs (e.g., [1]) is based on ad hoc

approaches that do not provide any performance guarantees.

One way to construct FH sequences in a systematic manner

is to use quorum systems [6]. Quorums have been widely

used in distributed systems to solve the mutual exclusion

problem, the agreement problem, and the replica control

problem. Systematic quorum-based approaches for designing

FH protocols for control channel establishment have been

proposed in [2], [3]. One important advantage of quorum-

based FH designs is their robustness to synchronization errors

[7]. As will be explained later, some quorum systems, such

as uniform k-arbiter and Chinese remainder theorem (CRT)

quorum systems, enjoy certain properties that allow them to

be used for asynchronous communications. The approaches

in [2], [3] do not intrinsically support multicast rendezvous,

where all the nodes in a multicast group are required to

rendezvous in the same time slot. Furthermore, these protocols

are intended for a homogeneous spectrum environment, i.e.,

SUs are assumed to perceive the same spectrum opportunities.

Third, the FH sequences in these protocols are constructed

by assigning channels to time slots without considering the

temporal PU dynamics over these channels.

Group-based schemes have been proposed to facilitate mul-

ticast rendezvous [13]. These schemes are divided into two

categories: (i) neighbor coordination schemes (e.g., [4]), where

neighboring nodes broadcast their channel parameters to make

a group-wide decision, and (ii) cluster-based schemes (e.g.,

[10]), where nodes group around a cluster head according to

their channels availabilities. One drawback of these schemes

is the need for the initial step of neighbor discovery prior to

establishing a CCC. Also, these schemes incur considerable

overhead for maintaining the group-based control channel.

Even though these solutions establish a CCC for intra-group

communications, the problem of inter-group communications

is yet another challenge that remains to be addressed [13].

In [12], the authors proposed an FH-based jamming-

resistant broadcast communication scheme, called TDBS.

TDBS operates in one of two modes, TDBS-SU and TDBS-

AB. In both modes, the broadcast operation is implemented

as a series of unicast transmissions, distributed in time and
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Fig. 1: Multicast as a series of unicasts. Node E receives A’s

message TI(B,E) seconds after node B receives it.

frequency. The protocol does not account for PU dynamics

during the rendezvous process. Moreover, implementing the

multicast operation as a series of unicasts can lead to multicast

inconsistency. For example, a group of SUs may share a

group key that is used to encode/decode common secure

communication messages. For security purposes, this key may

have to be updated periodically [15]. However, the change

in the group key has to be consistent among all SUs in the

multicast group. Such consistency cannot be guaranteed if

changes in the group key are conveyed using a series of unicast

transmissions. Figure 1 shows a network of 5 nodes, where

node A needs to send an update message about the group

key to nodes B,C,D, and E. If A’s message is conveyed

sequentially to B, then to C, then to D, and finally to E,

using, for example, TDBS-AB, then, nodes B and E will have

inconsistent information during the time duration TI(B,E).
Thus, B will not be able to establish a secure communication

link with E during this duration.

Instead of designing different FH sequences that overlap at

common slots, the multicast rendezvous in [11] is established

after a series of pairwise rendezvous operations that result

in tuning all nodes in the multicast group to a common FH

sequence. The effectiveness of this approach cannot be main-

tained under node compromise (if one node is compromised,

then the FH sequences of all nodes are exposed).

Ignoring PU dynamics leads to excessively long time-to-

rendezvous (TTR), as shown in the example in Figure 2. In

this example, we consider two FH sequences of two SUs. The

time axis is divided into fixed-length frames. The two SUs

rendezvous on channel h1 in the first frame and on channel

h2 in the second frame (hx refers to a randomly assigned

channel). Figure 2(a) shows the case when the rendezvous

channels h1 and h2 become occupied by PUs during the

rendezvous slots (indicated in the arrows) in the first and

second frames, respectively. Figure 2(b) depicts the TTR for

the FH sequences in [3] as a function of the average channel-

time availability for SU communications. The TTR increases

as less time is available for SU communications. In the absence

of any channel prediction mechanism, Figure 2(c) shows the

collision rate with PUs/SUs as a function of the average

channel availability for the FH sequences in [3].

In this paper, we develop three multicast rendezvous al-

gorithms, namely AMQFH, CMQFH, and nested-CMQFH,

for asynchronous spectrum-heterogeneous DSA networks. We

use the uniform k-arbiter and the CRT quorum systems to

design our rendezvous algorithms. These two special quorum

systems satisfy the rotation k-closure property, which enables

them to function in the absence of node synchronization.

To account for PU dynamics, we also design two “optimal”

channel ordering mechanisms for channel sensing and as-

signment, one for AMQFH and the other for CMQFH and

nested-CMQFH. These mechanisms improve the rendezvous

process (i.e., reduce TTR) by selecting the top channels as

rendezvous channels. The ordering mechanisms are then used

in developing a proactive out-of-band sensing based dynamic

FH (DFH) algorithm for online adaptation of the FH sequences

used in our algorithms.

The remainder of this paper is organized as follows. In

Section II, we present the system and channel activity models.

Section III presents our proposed AMQFH and CMQFH

multicast rendezvous algorithms. Section IV compares the per-

formance of AMQFH with that of CMQFH. In Section IV, we

show that AMQFH is much faster than CMQFH, but CMQFH

has much larger Hamming distance (HD). In Section V, we

introduce nested-CMQFH, which represents a compromise

between AMQFH and CMQFH. Section VI introduces our

optimal channel ordering mechanisms, followed by our DFH

algorithm in Section VII. We evaluate the protocol in Sec-

tion VIII. Finally, Section IX concludes the paper.

II. SYSTEM AND CHANNEL MODELS

A. System Model

We consider an opportunistic DSA environment, with L
licensed channels, f1, f2, . . . , fL. SUs can hop over these

channels if they are not occupied by PUs. Without loss of

generality, we assume that FH occurs on a per-slot basis, where

the slot duration is T seconds. A packet can be exchanged

between two or more nodes if they hop onto the same channel

in the same time slot. We assume that one time slot is sufficient

to exchange one message. If multiple SU groups happen to

rendezvous on the same channel in the same time slot, they

use a CSMA/CA-like contention resolution procedure.

For j = 1, . . . , k, each SU j has its unique FH sequence

w(j). The channel used in the ith slot of FH sequence w(j)

is denoted by w
(j)
i , w

(j)
i ∈ {f1, . . . , fL}. Channel fj is

called a rendezvous frequency for the FH sequences w(1),

w(2), . . . , w(k) if there exists a rendezvous slot i such that

w
(m)
i = fj , ∀m ∈ {1, . . . , k}. As in previous quorum-based

FH designs, in our setup each FH sequence consists of several

time frames (see Figure 2(a)). Each frame consists of a block

of time-frequency hops.

B. Channel Activity Model

We assume that each channel fm,m = 1, . . . , L, can be

in one of three states: idle (state 1), occupied by a PU (state

2), or occupied by an SU (state 3). Transitions between these

states are assumed to follow a continuous-time Markov chain

(CTMC) with state space S = {1, 2, 3}, as shown in Figure 3.

For any i and j ∈ S, i 6= j, we assign a nonnegative number

α
(m)
ij that represents the rate at which channel fm transitions

from state i to state j. Let ρ
(m)
i denote the total rate at which
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Fig. 2: (a) Two quorum-based FH sequences. Effect of channel dynamics on (b) the time-to-rendezvous and (c) collisions with

PUs/SUs (95% confidence interval is shown in the figure).

channel fm leaves state i, i.e., ρ
(m)
i =

∑

j 6=i α
(m)
ij . Because

an SU is not allowed to access channels occupied by PUs,

a channel cannot directly transit from state 2 to state 3, i.e.,

α
(m)
23 = 0, ∀m ∈ {1, . . . , L}. In contrast, when a PU becomes

active on a channel occupied by an SU, the SU must leave

that channel immediately, so α
(m)
32 6= 0 in general.

Fig. 3: State transition diagram for channel fm.

Let A(m) =
[

α
(m)
ij

]

i,j
be the infinitesimal generator matrix

for channel m, and let P
(m)
t be the matrix whose (i, j) entry,

p
(m)
t (i, j), is the probability that channel m goes from state i

to state j in t seconds. It is known that [9]:

P
(m)
t = etA

(m)

. (1)

Without loss of generality, we assume that PUs become

active on channel m with rate λ
(m)
p , and terminate their

activity with rate µ
(m)
p , both according to Poisson processes.

Similarly, SUs arrive on channel m with rate λ
(m)
s and depart

with rate µ
(m)
s , both according to Poisson processes. Let

π(m) =
(

π
(m)
1 , π

(m)
2 , π

(m)
3

)

be the steady-state distribution

for channel m. Then, π(m) can be written as:

π
(m)
1 =

µ(m)
p (λ(m)

p +µ(m)
s )

(

λ
(m)
p +µ

(m)
p

)(

λ
(m)
s +λ

(m)
p +µ

(m)
s

) , π
(m)
2 =

λ(m)
p

(

λ
(m)
p +µ

(m)
p

)

π
(m)
3 =

µ(m)
p λ(m)

s
(

λ
(m)
p +µ

(m)
p

)(

λ
(m)
s +λ

(m)
p +µ

(m)
s

) .

III. QUORUM-BASED FH ALGORITHMS FOR MULTICAST

RENDEZVOUS

In this section, we present two algorithms for constructing a

set of FH sequences (≥ 2) for multicast rendezvous. The first

algorithm, denoted by AMQFH, uses the uniform k-arbiter

quorum system. The second algorithm, denoted by CMQFH,

uses the CRT quorum system. These algorithms have two main

attractive features. First, they allow a node to construct its

sequence by only knowing the number of nodes in its multicast

group. Hence, these algorithms can be executed in a fully

distributed way. Second, these algorithms can still function

in the absence of node synchronization.

A. Preliminaries

Before describing our quorum-based multicast rendezvous-

ing algorithms, we give a few basic definitions that will

facilitate further understanding of subsequent sections.

Definition 1. Given a set Zn = {0, 1, . . . , n−1}, a quorum

system Q under Zn is a collection of non-empty subsets of Zn,

each called a quorum, such that: ∀G,H ∈ Q : G ∩H 6= ∅.

Throughout the paper, Zn is used to denote the set of

nonnegative integers less than n.

Definition 2. Given a non-negative integer i and a quorum

G in a quorum system Q under Zn, we define rotate(G, i) =
{(x+i) mod n, x ∈ G} to denote a cyclic rotation of quorum

G by i.
Definition 3. A quorum system Q under Zn is said

to satisfy the rotation k-closure property for some k ≥
2 if ∀G1, G2, . . . , Gk ∈ Q and ∀i1, i2, . . . , ik ∈ Zn,
⋂k
j=1 rotate(Gj , ij) 6= ∅.

The rotation k-closure property exhibited by the quorum

systems used in our algorithms enables them to work in the

absence of node synchronization.

B. Uniform k-Arbiter Multicast FH Algorithm (AMQFH)

Before explaining the AMQFH algorithm, we first define

the k-arbiter and uniform k-arbiter quorum systems.
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Fig. 4: Rotation 3-closure property of the uniform 2-arbiter

quorum system.

Definition 4. A k-arbiter quorum system Q under

Zn is a collection of quorums such that
⋂k+1
i=1 Gi 6=

∅, ∀G1, G2, . . . , Gk+1 ∈ Q [14].

For example, the quorum system Q = {{0, 1, 2}, {0, 1, 3},
{0, 2, 3}, {1, 2, 3}} under Z4 is a 2-arbiter quorum system.

The intersection among any three quorums is not empty.

One specific type of k-arbiter quorum systems that is of

interest to us is the so-called uniform k-arbiter quorum system.

Such a system Q satisfies [8]:

Q =

{

G ⊆ Zn : |G| =

(⌊

kn

k + 1

⌋

+ 1

)}

. (2)

The above 2-arbiter quorum system is a uniform 2-arbiter

because each quorum in Q contains ⌊2× 4/(2 + 1)⌋+ 1 = 3
elements of Z4. It is known [8] that the uniform k-arbiter

quorum system has the rotation (k + 1)-closure property. Fig-

ure 4 illustrates the rotation 3-closure property of the quorum

system Q = {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}}.

To create FH sequences that satisfy the rotation (k + 1)-
closure property using a uniform k-arbiter quorum system, n
needs to be selected such that the number of different quorums

of length ⌊kn/(k + 1)⌋ + 1 that can be derived from Zn is

greater than or equal to k + 1, i.e.,
(

n
⌊

kn
k+1

⌋

+ 1

)

≥ k + 1. (3)

To satisfy (3),
⌊

kn
k+1

⌋

should be less than n − 1, which

requires n to be greater than k + 1 (k and n are positive

integers, and k
k+1 is monotonically increasing in k).

We now explain AMQFH through an example. Consider a

multicast group of 3 nodes. In AMQFH, each FH sequence

consists of several time frames, each containing several slots.

Because the uniform 2-arbiter quorum system satisfies the

rotation 3-closure property (i.e., any three cyclically rotated

quorums overlap in at least one slot), each frame is constructed

using one quorum. Thus, the frame length will be n. We set n
to the smallest value that satisfies (3), i.e., n = k+2 = 4. The

following steps are used to obtain the various FH sequences:

1) Construct a universal set Z4 = {0, 1, 2, 3}.

2) Construct a uniform 2-arbiter system Q under Z4.

3) Construct an FH sequence w as follows:

• Select a quorum from Q and assign it to G(1) (e.g.,

G(1) = {0, 1, 2}). The quorum selection procedure

will be explained in Section VII.

• Assign a frequency h1 to the FH slots in the given
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Fig. 5: AMQFH FH construction algorithm.

frame that correspond to G(1), and assign a random

frequency hx to the other slots, where h1 and hx ∈
{f1, f2, . . . , fL}. The channel selection procedure

will be discussed in Section VI.

• Repeat the above procedure for the other frames

using quorum G(k) and channel fk for the kth frame.

4) Repeat step 3 to construct the other FH sequences.

A pseudo-code of the AMQFH algorithm for constructing

one frame of FH sequences, where any k+1 sequences overlap

at least in one slot, is shown in Algorithm 1. Figure 5 shows

three frames of FH sequences w, x, y, and z, constructed

according to the AMQFH algorithm.

Algorithm 1 AMQFH Algorithm

Input: multicast group size (k + 1), f= {f1, f2, . . . , fL}, h
Output: R

1: R = ∅

2: Compute: n = k + 2, Zn, |R| =

(

n
⌊

kn
k+1

⌋

+ 1

)

, and a uniform

k-arbiter quorum system Q = {G1, G2, . . . , G|R|} under Zn

3: for j = 1 : |R| do

4: Select a quorum Hj from Q
5: for i = 0 : n− 1 do

6: if i ∈ Hj then

7: w
(j)
i

= h
8: else

9: w
(j)
i

= hx, randomly chosen from f

10: end if

11: end for

12: R = R ∪ w(j)

13: end for

C. CRT Multicast FH Algorithm (CMQFH)

The CMQFH algorithm uses the CRT quorum system,

which also exhibits the rotation k-closure property. The CRT

is formally described as follows [16].

Theorem 1. Let x1, . . . , xk be k positive integers that

are pairwise relatively prime, i.e., gcd(xi, xj) = 1, ∀i, j ∈
{1, . . . , k}, where gcd(xi, xj) is the greatest common divisor

of xi and xj . Let y =
∏k
l=1 xl and let z1, . . . , zk be k integers,

where zi < xi, ∀i ∈ {1, . . . , k}. Then, there exists a solution

I for the following system of simultaneous congruences:

z1 (mod x1) ≡ z2 (mod x2) ≡ . . . ≡ zk (mod xk).

Furthermore, any two solutions I and I ′ to the above system

are congruent modulo y, i.e., I ′ ≡ I (mod y). That is, there

exists exactly one solution I between 0 and y − 1.

Using Theorem 1, we can construct quorum systems that

satisfy the rotation k-closure property, as in Theorem 2.

Theorem 2. Let x1, . . . , xk be k positive integers that are

pairwise relatively prime, and let y =
∏k
l=1 xl. The CRT
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Fig. 6: Rotation 3-closure property of a CRT quorum system.

quorum system Q = {G1, . . . , Gk}, where Gi = {xici, ci =
0, . . . , y/xi − 1}, satisfies the rotation k-closure property.

As an example of the CRT quorum system, consider three

pairwise relatively prime numbers x1 = 2, x2 = 3, and

x3 = 5. Then, y = x1x2x3 = 30. We can construct three

quorums G1 = {0, 2, 4, . . . , 28}, G2 = {0, 3, 6, . . . , 27},
and G3 = {0, 5, 10, . . . , 25} according to x1, x2, and x3,

respectively, under Z29. When z1 = 0, z2 = 1, and z3 =
0,
⋂3
j=1 rotate(Gj , zj) = 10, as shown in Figure 6. It is not

difficult to verify that ∀z1, z2, z3 ∈ Z29, quorums G1, G2,

and G3 have an intersection. Thus, the CRT quorum system

Q = {G1, G2, G3} satisfies the rotation 3-closure property.

The CMQFH algorithm for generating k asynchronous

multicast FH sequences is similar to the AMQFH algorithm,

with two main differences. First, The frame length is equal to

y =
∏k
i=1 xi. Second, CMQFH uses the CRT quorum system

instead of the uniform (k − 1)-arbiter quorum system.

D. Asynchronous Multicast Rendezvous

Result 1. FH sequences constructed according to AMQFH

and CMQFH algorithms can support asynchronous multicast

rendezvous if each FH sequence continues to use the same

frequency and the same quorum in all frames of the FH

sequence (e.g., in Figure 5, h1 = h2 = h3 = h∗ and

G(1) = G(2) = G(3) = G∗).

Proof. Result 1 is a direct consequence of the (k + 1)-
intersection and the rotation (k + 1)-closure properties of the

uniform k-arbiter and CRT quorum systems, and the fact that

each frame in an FH sequence is constructed using one quorum

from the uniform k-arbiter or CRT quorum systems.

Throughout the paper, we will use G∗ and h∗ to denote the

common quorum and the common rendezvous channel that

applies to all frames of an FH sequence. The condition in

Result 3 is sufficient but not necessary. Thus, FH sequences

can still rendezvous even if the quorum changes from one

frame to the next, provided that this change does not occur

very frequently. This is illustrated in Figure 7, where sequence

w uses two quorums H1 and H2, and sequence x uses

quorums H3 and H4, as depicted in the figure. The left shaded

part of sequence x in Figure 7 represents a cyclic rotation

of H3, and hence, by the rotation k-closure property of the

uniform k-arbiter and CRT quorum systems, this part overlaps

with quorum H1 of sequence w. The right shaded part in

sequence x does not generally overlap with H1 in w.

frameslot

quorum:

quorum:

Fig. 7: Example of asynchronous rendezvous.

Because the condition in Result 3 is sufficient but not

necessary, we require the rendezvous channel of a given FH

sequence to be available for a certain number of slots in the

current quorum in order to keep assigning this channel to this

same quorum in the next frame. Otherwise, this channel is

assigned to the quorum for which it is maximally available

(i.e., the quorum that has the maximum number of available

slots during which this channel is predicted to be idle).

E. Heterogeneous Multicast Rendezvous

In Figure 5, the four FH sequences are constructed using the

same rendezvous channels h1, h2, and h3, but with different

G(1), G(2), and G(3) quorums. To allow nodes to construct

their FH sequences in a fully distributed way, depending on

their different views of spectrum opportunities, we also con-

sider a variant of our multicast algorithms whereby each node

assigns channels to quorum slots based on the forecasted avail-

ability of these channels. Note that even in a heterogeneous

spectrum environment, neighboring nodes are still likely to

partially overlap in their views of idle channels. Hence, when

neighboring nodes construct their FH sequences independently

based on the forecasted channel availability, they will likely

end up having similar channel assignments. The algorithm

for forecasting the channel state and accordingly assigning

rendezvous channels will be discussed in Section VII.

IV. AMQFH VS. CMQFH

In this section, we compare the AMQFH and CMQFH

algorithms. Before comparing these algorithms, we explain

two different implementations of these algorithms:

• Centralized: In this case, the source node constructs the

multicast FH sequences based on AMQFH or CMQFH.

It then performs pairwise rendezvous with the nodes in

the target multicast group. During each pairwise ren-

dezvous, the source node communicates one multicast FH

sequence. The receiving node tunes to the new sequence.

Note that a receiving node does not wait until all nodes

in the multicast group tune to their new FH sequences,

as these sequences are constructed using AMQFH or

CMQFH, which have the rotation k-closure property.

• Distributed: The source node uses a series of pairwise

rendezvous to communicate only the number of nodes

in the multicast group to the target multicast group.

Then, each receiving node constructs its own multicast

FH sequence. In this case, it is possible for two nodes

to end up having the same multicast FH sequence. Note

that for AMQFH and CMQFH, knowing the number of

nodes in the multicast group is enough to construct the

multicast FH sequences.
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If resilience to node compromise is important, the central-

ized approach is more preferable to the distributed approach,

because different nodes in the multicast group follow different

FH sequences. Otherwise, the distributed approach is prefer-

able, since it does not require the multicast initiator to send

the FH sequences to the other nodes in the multicast group.

A. Expected TTR

Let TAH and TCH denote the expected TTR for AMQFH

and CMQFH, respectively, where the expectation is taken over

all possible random assignments. Considering the distributed

implementation, TAH , can be expressed as:

TAH =
n−1
∑

i=1

[

iβ(αi+1)
i
∏

j=1

(1− β(αj))

]

(4)

where β(αi) and αi, i = 1, . . . , n− 1, are given by:

β(αj) =
k
∑

i=0

[

(

k + 1
i

)

αk+1−i
j

(

1− αj
L

)i
]

+ (1− αj)
k+1

(

1

L

)k
(5)

αi =

⌊

kn
k+1

⌋

− i+ 2

n
+
i− 1

n
×

⌊

kn
k+1

⌋

− i+ 3

n− i+ 1
. (6)

As for TCH , it is given by:

TCH =

n−1
∑

i=1

i(1− ϕ)i−1ϕ (7)

where ϕ is given by:

ϕ =
k−1
∑

i=0

∑

∀{s1,s2,...,sk−i}
∈{x1,x2,...,xk}

[

1

s1s2 . . . sk−i

(

1

L

)i k
∏

j=k−i+1

(

1−
1

sj

)

]

+

(

1

L

)k−1 k−1
∏

l=0

(

1−
1

sl

)

.

(8)

k equals to the number of nodes minus one for TAH , and to

the number of nodes for TCH . Figures 9 and 10 show the

expected TTR for AMQFH and CMQFH, respectively. The

upper bound on the TTR corresponds to the case when nodes

cannot rendezvous during the randomly assigned slots with

probability 1. For both AMQFH and CMQFH, the expected

TTR increases with L and with the multicast group size.

B. Expected Hamming Distance (HD)

The expected HD for two FH sequences x = (x1x2 . . . xn)
and y = (y1y2 . . . yn), denoted by D(x,y), is defined as

D(x,y) def
= E[D(x,y)] = E[

(
∑n
i=1 1{xi 6=yi}

)

/n], where 1{·}

is the indicator function. In addition to robustness against

node compromises, FH sequences with higher HD will have

a lower collision probability. A collision occurs when two or

more neighboring multicast groups rendezvous on the same

slot using the same channel. We now derive D(x,y) under

AMQFH and CMQFH. For simplicity, we drop the superscript

in D(x,y) and replace it with D. In AMQFH, D is the

same for all pairs of FH sequences, whereas in CMQFH they

are different for different pairs. Thus, for CMQFH, we will

compute the expected value over all pairs of FH sequences.

Let DAH and DCH denote the value of D for the AMQFH

and CMQFH algorithms, respectively. Let DAH,C and DAH,D
denote the value of D for the centralized and distributed

versions of AMQFH, respectively. DCH,C and DCH,D are

defined similarly for CMQFH. Let D∗
AH and D∗

CH represent

upper bounds on DAH and DCH , respectively. Then, after

some manipulations it can be shown that:

DAH = µ1

(

n−
⌊

kn
k+1

⌋)

µ3

n
+(1−µ1)

(

n−
⌊

kn
k+1

⌋

− 1
)

µ3

n
(9)

where µ1 = µ2−1
µ2

, µ2 =

(

n
⌊

kn
k+1

⌋

+ 1

)

for DAH,D, and

µ1 = 1 for DAH,C and D∗
AH . µ3 equals L−1

L for DAH,C and

DAH,D, and equals 1 for D∗
AH . Furthermore,

DCH =

∑k
i=1

∑k
j=1
{α1}

[ (

n− n
xixj

)

α2

]

2α3n
(10)

where α1 equals j 6= i for DCH,C and D∗
CH and equals ∅ for

DCH,D, α2 equals L−1
L for DCH,C and DCH,D and equals

1 for D∗
CH , and α3 equals

(

k
2

)

for DCH,C and D∗
CH and

equals k2 for DCH,D. The frame length n equals to
∏k
i=1 xi.

Figure 8 depicts D vs. the multicast group size for the

AMQFH and CMQFH algorithms. As the multicast group size

increases, DCH increases whereas DAH decreases. Hence, the

improvement in D that is achieved by using CMQFH instead

of AMQFH increases with the increase in the size of the

multicast group. The centralized implementations of AMQFH

and CMQFH have better D than their distributed versions.

V. NESTED-CMQFH ALGORITHM

As shown in the previous section, the TTR of CMQFH is

much larger than that of AMQFH, but its average HD is also

much higher. Hence, AMQFH is preferred over CMQFH if

the primary goal is to establish multicast communications as

fast as possible, but it may not be very efficient under node

comprise because of its relatively small HD. To provide a

tradeoff between speed of rendezvous and robustness against

node compromise, in this section we propose a third mul-

ticast rendezvous algorithm, called nested-CMQFH. Nested-

CMQFH is faster than CMQFH, but not as fast as AMQFH.

At the same time, the HD of nested-CMQFH is larger than

that of AMQFH, but not as large as CMQFH. We explain the

nested-CMQFH algorithm through an example.

Suppose that the number of nodes in the multicast group is

3. Then, according to the CMQFH algorithm, x1 = 2, x2 =
3, x3 = 5, and the frame length y = x1x2x3 = 30. The
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difference between CMQFH and nested-CMQFH is that in-

stead of having one quorum in each frame of an FH sequence,

each FH sequence will have a certain number of quorums in

each frame, depending on the prime number that is used in

constructing this FH sequence. The number of quorums in a

frame for a given FH sequence is called the nesting degree

of this FH sequence. In contrast to AMQFH and CMQFH,

knowing the number of nodes in the multicast group is not

enough to construct the multicast FH sequences in nested-

CMQFH. In addition to the multicast group size, a node needs

to know its nesting degree. The nesting degree constitutes a

tradeoff between TTR and HD. Large values of the nesting

degree result in a small TTR, but also a small HD. In our

design, the FH sequence that uses a prime number xi will have

a nesting degree of
⌈

xi

2

⌉

. The quorums used in constructing

this FH sequence will be denoted throughout the paper by

G∗
j , j ∈

{

1, . . . ,
⌈

xi

2

⌉}

. The selection of the prime number xi
and the corresponding

⌈

xi

2

⌉

quorums, G∗
j , j ∈

{

1, . . . ,
⌈

xi

2

⌉}

,

will be explained in Section VII. Figure 11 illustrates the

nested-CMQFH design when the multicast group size is 3.

The performance of nested-CMQFH will be examined and

compared with AMQFH and CMQFH in Section VIII.

Fig. 11: Nested-CMQFH (group size = 3).

VI. OPTIMAL CHANNEL ORDERING

In the previous sections, we introduced three multicast

rendezvous algorithms without explaining the channel as-

signment process, i.e., the channel h∗ to assign to quorum

G∗ for AMQFH and CMQFH, and the channels hi, i ∈
{

1, . . . ,
⌈

xi

2

⌉}

, to assign to quorums Wi, i ∈
{

1, . . . ,
⌈

xi

2

⌉}

,

respectively, for nested-CMQFH. To achieve efficient channel

assignment, each node independently sorts available channels

in some optimal sense (no message exchange is assumed

between the nodes). In addition to channel assignment, the

sorted list of channels is also used to sequentially sense

channels, such that the best channel will be sensed first,

followed by the next best channel, and so on. The best channel

is selected according to several factors, as will be explained

in this section.

Furthermore, in the previous sections, we did not specify

the quorum selection procedure. One naı̈ve approach to jointly

address the channel sorting and quorum selection problems

is to exhaustively examine all possible channel-quorum as-

signments and select the one that maximizes the number of

available slots (i.e., slots during which the assigned channels

are available). The time complexity of this exhaustive search

is given by:

O

((

n
⌊

kn
k+1

⌋

+ 1

)

(⌊

kn
k+1

⌋

+ 1
)

L′

)

, AMQFH

O(kyL′), CMQFH

O

(

∑k
i=1

(

L′
⌈

xi

2

⌉

)

xi!y⌈ xi
2 ⌉

(xi−⌈ xi
2 ⌉)!xi

)

, nested-CMQFH

where k is the size of the multicast group minus one for

AMQFH, and the size of the multicast group for CMQFH

and nested-CMQFH, n is the frame length for AMQFH, xi is

the prime number used in constructing the ith FH sequence

(as explained in Theorem 2), y =
∏k
i=1 xi is the frame length

for CMQFH and nested-CMQFH, which represents the kth

primorial and is given by e(1+o(1))k log k, and L′ is the number

of available channels. This expensive exhaustive search needs

to be performed by each node in each frame.

To avoid performing an expensive exhaustive search for

each frame and also delaying making the decision until all

channels are sensed, we address the problems of quorum

selection and channel assignment separately, and propose a

one-time sorting algorithm that prioritizes channels. In this

section, we present two channel ordering algorithms, one

for AMQFH and one for CMQFH and nested-CMQFH. In

Section VII, we address the quorum selection problem.

In our approach, channels are sorted based on their proba-

bilistic availability, which is determined by the channel aver-

age availability time and its fluctuation level. The fluctuation

level of a channel affects its prediction accuracy. Channel

activity prediction is more conservative when a channel ex-

hibits higher fluctuations for a given mean channel availability

time. Conservative prediction of channel availability results

in less exploitation of actually available slots. In addition
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to probabilistic channel availability, our sorting mechanism

also considers the probabilities of collision with PUs/SUs

over these channels, which we require to be below a specific

threshold. Moreover, for AMQFH, the sorting mechanism

considers as a third metric the time that a channel spends

in state 1 (idle state), which is known as the mean sojourn

time of state 1. To sort channels based on these criteria, we

propose an optimization problem for AMQFH that is different

from the optimization problem proposed for CMQFH and

nested-CMQFH. These ordering mechanisms start over when

the estimate of at least one channel parameters changes.

A. Optimal Sorting for AMQFH

As mentioned earlier, channel sorting is followed by quorum

selection. Consider a given channel. The best quorum for that

channel is the one with the maximum number of probabilis-

tically available slots. The AMQFH algorithm is based on

the uniform k-arbiter quorum system. As shown in Figure 4,

in a uniform k-arbiter quorum system, quorums consist of

several consecutive slots. Hence, to be inline with the quorum

selection procedure that will be performed after completing

channels sorting, the sorting mechanism needs to consider

the mean sojourn time of state 1, in addition to the average

channel availability times, fluctuation levels, and probabilities

of collision with PUs/SUs. The goal of our optimization

problem is to sort channels based on their average availability

times, while considering (i) the channel’s fluctuation levels, (ii)

the probabilities of collision with PUs/SUs for each channel,

and (iii) the channel’s mean sojourn time in state 1.

We formulate the channel sorting problem as a linear

programming problem. The objective function is a convex

combination of the average channel availability times, which

needs to be maximized. The channel’s fluctuation levels

and collision probabilities are jointly captured by imposing

constraints on them, as explained later. The channel’s mean

sojourn times of state 1 are incorporated through a sec-

ondary objective function, which also needs to be maximized.

Hence, our problem is formulated as a multi-objective linear

programming problem. Let qm be a weight associated with

channel fm,m ∈ {1, . . . , L}. The weights will be used for

two different purposes. First, in the quorum-based assigned

slots, the weights will be used to sort channels such that

the channel with the largest weight will be considered as the

best channel. Second, in the randomly assigned (non-quorum)

slots, these weights will be interpreted as probabilities, such

that channel fm will be assigned to non-quorum slots with

probability qm. We obtain the optimal value of the vector q

= (q1, q2, . . . , qL) that maximizes a convex combination of the

average channel availabilities, as a primary objective function,

and maximizes a convex combination of the channels average

sojourn times of state 1 as a secondary objective, subject to

the PUs/SUs collisions constraints, which also capture the

channels fluctuation levels.

For i ∈ {1, 2, 3} and m ∈ {1, . . . , L}, let T
(m)
i and R

(m)
i be

the sojourn time for channel m in state i and the first time that

channel m returns to state i after leaving it, respectively. Let

T
(m)
i

def
= E[T

(m)
i ] and R

(m)
i

def
= E[R

(m)
i ]. Following standard

Markov analysis, the fraction of time that channel m spends in

state i (i.e., T
(m)
i /(T

(m)
i +R

(m)
i )) is π

(m)
i , which was given

in Section II-B. T
(m)
1 is given by 1/(λ

(m)
p + λ

(m)
s ).

Our multi-objective channel sorting problem is formulated

as a two-stage sequential optimization problem. Problem 1 is

the first stage and Problem 2 is the second stage.

Problem 1.

maximize
q=(q1,q2,...,qL)

{

U(q)
def
=

L
∑

m=1

π
(m)
1 qm

}

s.t.
[

1−
n−1
∏

u=0
u 6=i

(1− p
(m)
(n+u)T (1, s))

]

qm < λ
(m)
PU,Col(n),

∀s ∈ {2, 3}, ∀m ∈ {1, . . . , L}, ∀i ∈ {1, . . . , C}

(11)

L
∑

m=1

qm = 1 (12)

0 ≤ qm ≤ 1, ∀m ∈ {1, . . . , L} (13)

where C
def
=

(

n
⌊

kn
k+1

⌋

+ 1

)

, and λ
(m)
PU,Col(n) and λ

(m)
SU,Col(n)

are prespecified thresholds on the probabilities of collisions

with PUs and other SUs, respectively. Note that both sets of

thresholds are functions of the frame length n and channel

m. The objective function in Problem 1 represents a convex

combination of the average channel availabilities π
(m)
1 ,m =

1, . . . , L. Constraint (11) restricts the collision probabilities

with PUs and SUs, while considering the specific structure

of uniform k-arbiter quorum systems. In addition to con-

straining the collision probabilities, constraint (11) is used

to differentiate between channels based on their levels of

fluctuations by imposing different upperbounds on qm. Note

that channels with higher fluctuation levels will have higher

collision probabilities, and hence will be less preferable (i.e.,

assigned a smaller weight). Let q∗
I be an optimal solution

to Problem 1, and let U∗
I = U(q∗

I). The goal of the second

optimization stage is to give slightly higher priority to channels

with larger mean sojourn times of state 1 (i.e., channels with

more consecutive available slots).

Problem 2.

maximize
q=(q1,q2,...,qL)

{

F(q)
def
=

L
∑

m=1

T
(m)
1 qm

}

s.t.

U∗
I (1− ǫ) < U(q). (14)

Problem 2 aims at maximizing a convex combination of

the average sojourn times of state 1 subject to constraints

(11)− (13), in addition to the new constraint in (14). Let F∗

be the optimal value of F(q) in Problem 2, and let U∗ be

the corresponding value of U(q). In (14), ǫ, 0 ≤ ǫ ≤ 1,

restricts the reduction in the first objective function optimal
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value (i.e., U∗
I − U∗). Increasing ǫ increases the effect of the

second objective function on channel ordering.

Having explained the structure of the two-stage sequential

optimization problem, we now study the behavior of this prob-

lem under different parameters using an example. Consider

a network with ten channels. The values of π
(i)
1 and T

(i)
1

for channel fi, i = 1, 2, . . . , 10, are shown in Figure 12.

These values are selected such that they cover the cases

where different channels have the same average availability

times, but different mean sojourn times of state 1, fluctuation

levels, and collision probabilities. To complete the description,

Table I depicts the values of π2/π3 for different channels.

Table II shows the order of channels for different values of

λ = λ
(m)
PU,Col(n) = λ

(m)
SU,Col(n) and different values of ǫ

(k = 4). Only channels with non-zero weights are shown.

TABLE I: π
(m)
2 /π

(m)
3 for different channels.

Ch. (m) π
(m)
2 /π

(m)
3 Ch. (m) π

(m)
2 /π

(m)
3

f1 11.00427 f6 188.3636

f2 11.00427 f7 188.3636

f3 4.68 f8 1.066667

f4 4.68 f9 1.066667

f5 188.3636 f10 1.066667

For our example, the minimum value of λ that makes the

problem feasible, denoted by λmin, is 0.05. This value is small

enough so that none of the channels can receive a very high

weight, leaving the other channels with zero weights. As λ

increases, channels with larger values of π
(m)
1 receive higher

weights, leaving the less available channels with zero weights.

Note that in this example, for some values of λ and ǫ, even

though channels f5, f6, and f7 have larger π
(m)
1 values than

f8, they receive smaller weights than f8. The reason is that

TABLE II: Channel order for AMQFH (best is leftmost).

ǫ λ = 0.05

0 f1 f2 f3 f4 f8 f5 f9 f6 f7 f10
0.05 f1 f2 f3 f4 f8 f5 f9 f6 f7 f10
0.1 f1 f2 f3 f4 f8 f5 f9 f6 f7 f10

ǫ λ = 0.07

0 f1 f2 f3 f4 f5 f6
0.05 f1 f2 f3 f5 f6 f8 f4
0.1 f1 f2 f3 f8 f5 f6 f4

ǫ λ = 0.08

0 f1 f2 f3 f4 f5 f6
0.05 f1 f2 f3 f5 f6 f8 f4
0.1 f1 f2 f3 f5 f6 f8

these channels have different values of π2/π3, and as shown

in constraint (11), Problem 1 differentiates between collisions

with PUs and collisions with SUs. Channels f5, f6, and f7
have relatively high collision probabilities with PUs but very

low collision probabilities with other SUs, whereas channel

f8 have probabilities of collision with PUs and SUs that are

neither high nor low. Because channels f5, f6, and f7 have

higher collision probabilities with PUs compared to channel

f8, q5, q6, and q7 are smaller than q8. Furthermore, for small

values of λ, increasing ǫ does not change the channels order

because the feasibility region is small. On the other hand, when

λ is large enough (e.g., λ = 0.08), increasing ǫ can affect the

order of channels.

B. Optimal Sorting for CMQFH and Nested-CMQFH

CMQFH and nested-CMQFH algorithms use the CRT quo-

rum system. In this system, quorums do not necessarily have

consecutive slots, and hence there is no need for the second

objective function in Problem 2. Furthermore, since the struc-

ture of the CRT quorum system is different than that of the

uniform k-arbiter quorum system, the constraints of the new

optimal sorting mechanism are different from those in Problem

1. Let φ
def
= max

1≤j≤k
{xj} and ψi

def
=
⌊

φ
xi

⌋

, i = 1, 2, . . . , k. Then,

our channel sorting problem for CMQFH and nested-CMQFH

can be formulated as follows:

Problem 3.

maximize
q=(q1,q2,...,qL)

{

U(q)
def
=

L
∑

m=1

π
(m)
1 qm

}

s.t.

1

ψi

ψi
∑

v=1

[

1−

v y

φ
−1
∏

u=
(v−1)y

φ

(1− p
(m)
(y+uxi)T

(1, s))

]

qm < λ
(m)
PU,Col(y),

∀s ∈ {2, 3}, ∀m ∈ {1, . . . , L}, ∀i ∈ {1, . . . , k}
(15)

L
∑

m=1

qm = 1 (16)

0 ≤ qm ≤ 1, ∀m ∈ {1, . . . , L} (17)

where k is the number of nodes and y =
∏k
i=1 xi.

In contrast to uniform k-arbiter quorum systems, different

quorums in CRT quorum systems have different sizes. Because

of this, following the same approach in constraining the

collision probabilities as in (11) will lead to two undesirable

effects. First, quorums that use small prime numbers (i.e., have

a large number of slots) will have high collision probabilities

(i.e., the probability that one of the slots of a quorum is in

collision), and hence cannot satisfy the collision probabilities

constraints. Second, quorums with smaller numbers of slots

will end up with lower collision probabilities, and hence

receive larger weights, even though they may have fewer

available slots. To remedy these undesirable outcomes, we

divide each frame into sub-frames, each with length equals
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TABLE III: Channel order for CMQFH and nested-CMQFH.

λ best worst

0.067 f1 f2 f3 f4 f8 f9 f10 f5 f6 f7
0.068 f1 f2 f3 f4 f8 f9 f10 f5 f6 f7
0.069 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
0.07 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

to y/φ, and consider the collision probability for each sub-

frame. Then, we compute the average over the sub-frames of

a given frame, as shown in (15). Table III depicts the order

of channels in Figure 12, obtained by solving Problem 3 for

different values of λ = λ
(m)
PU,Col(n) = λ

(m)
SU,Col(n) and for

k = 5. Setting λ to the minimum value that makes the problem

feasible (i.e., λ = λmin = 0.067), we observe that the problem

favors channels f8, f9, and f10 over channels f5, f6, and

f7 because the former three channels have higher collision

probabilities with PUs. Similar to AMQFH, increasing λ

relaxes the constraints in (15), which makes π
(m)
1 the dominant

factor in ordering channels.

VII. DFH ALGORITHM

We now explain how quorums are selected in the AMQFH,

CMQFH, and nested-CMQFH algorithms. As mentioned be-

fore, our quorum selection procedure relies on forecasting

the states of various channels in the next frame, driven by

proactive out-of-band sensing of their states in the current

frame. Because this procedure results in online adaptation

of the quorum G∗ (for AMQFH and CMQFH) and the

quorums G∗
j , j ∈

{

1, . . . ,
⌈

xi

2

⌉}

, i ∈ {1, 2, . . . , k} (for nested-

CMQFH), and hence online adaptation of the FH sequences,

it is effectively a DFH algorithm. We use the following

example to explain this DFH algorithm. In this example, we

use the nested-CMQFH algorithm. CMQFH is a special case

of nested-CMQFH, where all nodes have a nesting degree of

one. For AMQFH, the same approach applies, but using a

different quorum structure.

Consider an FH sequence that uses the prime number 5.

Then, there will be
⌈

5
2

⌉

= 3 nested quorums in each frame.

Consider a given frame in this sequence. The node that follows

this FH sequence starts sensing channels according to the

order obtained in Section VI. Let h = {h1, h2, h3} be the

best three available channels, ordered decreasingly according

to their quality. Then, quorums G∗
1, G∗

2, and G∗
3 that will

be assigned to channels h1, h2, and h3, respectively, will be

selected so as to maximize the number of quorum slots for

which the assigned channel is idle with probability greater than

a threshold γ. If more than one quorum assignment results in

the same maximum number of slots, we break the tie based on

the average idle probabilities of h1, h2, and h3, averaged over

all slots that belong to G∗
1, G

∗
2, and G∗

3, respectively. Formally,

the problem of selecting quorums G∗
1, . . . , G

∗

⌈ xi
2 ⌉

for the FH

sequence that uses prime number xi is formulated as follows:

maximize
(

G∗
1 ,G

∗
1 ,...,G

∗

⌈ xi
2 ⌉

)

{ ⌈ xi
2 ⌉
∑

j=1

n−1
∑

l=0

1
{p

(j′)

(n−j
τs
T

+l)T
(1,1)≥γ}

+
1

⌈

xi

2

⌉

(

y
xi

)

⌈ xi
2 ⌉
∑

j=1

n−1
∑

l=0

p
(j′)

(n−j τs
T

+l)T
(1, 1)

}

(18)

where τs is the sensing time for one channel and y is the

frame length as defined in Section III-C. Given that hj = fj′

where j′ ∈ {1, . . . , L}, p
(j′)

(n−j τs
T

+l)T
(1, 1) is the probability

that hj will remain available in the lth slot of the next frame,

given that it is currently available. The computation of pt(x, y)
was explained in Section II-B. The second term in (18) is

always < 1. Hence, for two different sets of quorums Hi, i ∈
{

1, 2, . . . ,
⌈

xi

2

⌉}

and H
′

i , i ∈
{

1, 2, . . . ,
⌈

xi

2

⌉}

, if the set {Hi}

has more probabilistically available slots than the set {H
′

i},

then {G∗
i } is taken as {Hi}.

The above maximization problem is subject to three con-

straints: (i) p
(j′)

(n−j τs
T

+l)T
(1, 1) = 0, ∀l /∈ Hj if G∗

j = Hj , (ii)

each channel in
{

h1, h2, . . . , h⌈ xi
2 ⌉

}

is assigned to only one

of the xi quorums, and (iii) there is no more than one channel

assigned to the same quorum.

We solve the above maximization problem by considering

all combinations of
⌈

xi

2

⌉

channels and xi quorums (in our

example, we have 3 × 5 = 15 different channels-quorums

assignments) and selecting the channels-quorums assignment

that results in the maximum number of available slots.

Among all prime numbers, we select the one that results in

the maximum fractional number of available slots. The reason

for considering the fractional number is that different prime

numbers will result in different numbers of quorum slots, i.e.,

different values of
⌈

xi

2

⌉

y
xi

.

VIII. PERFORMANCE EVALUATION

We now present simulation results for AMQFH, CMQFH,

and nested-CMQFH. The proposed algorithms are studied

under different multicast group sizes, values of γ in (18),

and multicast spectrum heterogeneity levels, denoted by κm,

κm ∈ [0, 1]. κm is defined as the fraction of channels whose

active/idle states are perceived differently by every pair of

nodes in a multicast group. Channel sorting and quorum

selection procedures are integrated into AMQFH, CMQFH,

and nested-CMQFH, and evaluated based on (i) the prediction

accuracy, indicated by the collision rates with PUs/SUs and by

missed opportunities (i.e., number of actually available slots

that were considered unavailable), (ii) TTR, and (iii) average

percentage HD, averaged over different pairs of FH sequences.

Our algorithms are simulated under a realistic setting of no

synchronization. Specifically, the misalignment between FH

sequences is randomly selected in each experiment.

In our simulations, we use ten licensed channels, with the

profiles given in Figure 12. Each channel is characterized by

specific values of λ
(m)
p , λ

(m)
s , µ

(m)
p , and µ

(m)
s . To avoid having
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Fig. 13: Prediction accuracy for AMQFH.
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Fig. 15: TTR for CMQFH and nested-CMQFH.

the same order of channels for different runs, we slightly per-

turb the nominal values for the above four channel parameters

within small ranges, so that the efficiency of our channel

sorting and quorum selection mechanisms can be examined

as well. λ
(m)
PU,Col(n) and λ

(m)
SU,Col(n) in problems 1 and 2 are

selected to be λ
(m)
PU,Col(n) = λ

(m)
SU,Col(n) = λmin + 0.02, and

in Problem 3 are selected as λ
(m)
PU,Col(n) = λ

(m)
SU,Col(n) =

λmin + 0.0005, where λmin was defined in Section VI. The

reason for exceeding λmin is to increase the feasibility region.

For the AMQFH algorithm, the value of ǫ is set to 0.02. The

95% confidence intervals are indicated. When they are very

tight, they are not drawn to prevent cluttering the graph.

A. TTR

1) AMQFH: The TTR for a multicast group is affected by

the number of useful slots in the FH sequences that are used by

the members of this group. On the one hand, as can be seen in

Figure 13, relatively small values of γ bring about maximum

collision rates. Decreasing γ below 0.75 does not increase

the collision rate, because our ordering mechanism causes the

collision rate to be upper bounded (∼ 11% if the channels

are obtained from Figures 12). On the other hand, adopting a

more conservative approach by increasing γ will increase the

rate of missed opportunities even though the collision rate is

low. Figure 14(a) shows how the selection of an unnecessarily

large γ increases the TTR. Consequently, expecting the most

desirable performance of TTR, we have to select the value of

γ carefully. The value of γ that results in the smallest TTR

depends on the channel parameters λ
(m)
p , λ

(m)
s , µ

(m)
p , µ

(m)
s

and κm (note that the TTR for κm = 0.4 starts increasing

sooner compared to κm = 0). Large confidence intervals in

Figure 14(a) indicate the occurrence of few cases with high

TTR. TTR is considered as 0 if the nodes rendezvous in the

first slot of their FH sequences.

Figures 13 and 14(a) show that a tradeoff exists between

the prediction accuracy and the TTR. By selecting a near-

optimal threshold (γ = 0.8 in this example), our proposed

algorithm can guarantee a small TTR even in a heterogeneous

spectrum environment. Increasing the size of the multicast

group increases the TTR, because of the decrease in the pre-

diction accuracy that results from increasing the lag parameter.

Nonetheless, the TTR remains less than 2 slots for all cases,

as shown in Figure 14(b).

2) CMQFH and Nested-CMQFH: Similar to AMQFH,

increasing γ reduces the collision rate but increases missed

opportunities, as shown in Figure 16. However, the prediction

accuracy for nested-CMQFH is better than CMQFH, because

nested-CMQFH has more deterministically assigned quorum

slots than CMQFH (recall that in nested-CMQFH, high-quality

channels, as obtained from Problem 3, are assigned to quo-

rum slots, whereas non-quorum slots are randomly assigned).

This improvement is particularly significant when γ is large

(0.775 < γ ≤ 0.89 in our setup), where nested-CMQFH

improves collision rate without dramatically increases missed

opportunities. Moreover, nested-CMQFH has a smaller TTR

than CMQFH in both homogeneous and heterogeneous cases,

as shown in Figure 15. The improvement in the TTR un-

der nested-CMQFH is more noticeable when the group size

is large (e.g., 5 in figures 15(a) and 15(c)). Even though

nested-CMQFH is faster than CMQFH, it is still slower than
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Fig. 16: Prediction accuracy for CMQFH

and nested-CMQFH.
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Fig. 17: HD for AMQFH, CMQFH, and nested-CMQFH.

AMQFH, as can be seen by comparing figures 14 and 15.

B. Percentage HD

In contrast to the TTR, the HD is measured without taking

into account the effect of collisions, i.e., only the distance

between the generated sequences is considered. Figure 17

depicts the percentage HD for AMQFH, CMQFH, and nested-

CMQFH vs. the group size for different values of κm and

γ. AMQFH has the smallest HD among the three algorithms,

which corroborates the analyzed results in Section IV. Nested-

CMQFH has statistically the same HD as CMQFH for mod-

erate group sizes. For large group sizes, CMQFH has larger

HD than nested-CMQFH due to higher missed opportunities.

Increasing γ reduces the HD between the randomly assigned

parts of the FH sequences, and hence the total HD. The reason

is that when γ is increased, the number of channels that satisfy

this threshold goes down, and the cardinality of the pool of

available channels that can be used for the random assignment

part is reduced. Figure 17(b) shows that HD is increased by

increasing κm, as expected.

IX. CONCLUSIONS

In this paper, we developed three asynchronous algorithms

(AMQFH, CMQFH, and nested-CMQFH) for multicast ren-

dezvous in spectrum-heterogeneous DSA networks. To ac-

count for PU dynamics, we also designed two channel order-

ing mechanisms for sequential channel sensing and channel

assignment (one for AMQFH and the other for CMQFH and

nested-CMQFH). Moreover, we developed a proactive out-of-

band sensing based DFH algorithm for online adaptation of

the FH sequences used in our rendezvous algorithms.

Simulation results were obtained under varying and het-

erogeneous channel availabilities. We observed a close match

between the simulation results and the numerical results that

do not consider channel dynamics. This match between the

numerical and simulation results shows the effectiveness of

our ordering and prediction mechanisms. AMQFH can provide

TTR less than 2 slots even in a heterogeneous environment

if γ is selected appropriately, whereas CMQFH attains high

HD (> 50%). In between, nested-CMQFH achieves large HD

values which are very close to CMQFH but with comparable

TTR values to AMQFH, especially when the group size is

moderate or the environment is homogenous.
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