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Price-Based Joint Beamforming and
Spectrum Management in Multi-Antenna Cognitive

Radio Networks
Diep N. Nguyen and Marwan Krunz

Abstract—We consider the problem of maximizing the
throughput of a multi-antenna cognitive radio (CR) network.
With spatial multiplexing over each frequency band, a multi-
antenna CR node controls its antenna radiation directions and
allocates power for each data stream by appropriately adjusting
its precoding matrix. Our objective is to design a set of precoding
matrices (one per band) at each CR node so that power and
spectrum are optimally allocated for the node and its interference
is steered away from unintended receivers. The problem is non-
convex, with the number of variables growing quadratically with
the number of antenna elements. To tackle it, we translate
it into a noncooperative game. We derive an optimal pricing
policy for each node, which adapts to the node’s neighboring
conditions and drives the game to a Nash-Equilibrium (NE).
The network throughput under this NE equals to that of a locally
optimal solution of the non-convex centralized problem. To find
the set of precoding matrices at each node (best response), we
develop a low-complexity distributed algorithm by exploiting the
strong duality of the convex per-user optimization problem. The
number of variables in the distributed algorithm is independent
of the number of antenna elements. A centralized (cooperative)
algorithm is also developed. Simulations show that the network
throughput under the distributed algorithm rapidly converges to
that of the centralized one. Finally, we develop a MAC proto-
col that implements our resource allocation and beamforming
scheme. Extensive simulations show that the proposed protocol
dramatically improves the network throughput and reduces
power consumption.

Index Terms—Noncooperative game, pricing, cognitive radio,
MIMO, power allocation, frequency management, beamforming.

I. INTRODUCTION

RECENT years have witnessed a great interest in cogni-
tive radio (CR) and multi-input multi-output (MIMO)

technologies. Through spectrum sensing, CRs can oppor-
tunistically communicate on temporarily idle frequency bands
while avoiding interference with licensed primary users (PUs).
MIMO communications improve the link throughput by send-
ing independent data streams simultaneously over different
antennas (a.k.a. spatial multiplexing).

A crucial challenge in CR networks (CRNs) is how to
effectively allocate transmission powers and spectrum among
CRs (see Fig. 1(a)) so as to maximize the network throughput
while protecting primary users (PUs) from CR interference.
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Even for a single channel and single-antenna wireless devices,
the problem is difficult due to the non-convexity of the network
throughput function.

The incorporation of MIMO techniques into CR systems
introduces two new control dimensions, besides power control
and frequency management: power allocation over antennas
(space dimension) and interference management. The latter
comes from MIMO’s degrees of freedom [1], which allow
a MIMO node to suppress interference from others and
beamform its antenna patterns to keep interference away from
unintended receivers. MIMO’s power allocation and inter-
ference management can be jointly controlled via precoding
matrices, a spatial multiplexing technique [1]. Previous works
(e.g., [2] [3] [4]) considered power allocation or stream control
(see Fig. 1(b)), but did not take into account interference
management via controlling the antenna beams. An optimal
set of precoding matrices for each node allocates power over
both space and frequency dimensions (Fig. 1(c)) and yields
radiation patterns that induce minimum interference (Fig.
1(d)), so as to maximize network throughput. This problem
is the focus of our work.

II. RELATED WORKS

Ignoring the need to protect PUs, the integration of MIMO
into CRNs very much resembles multi-carrier (e.g., OFDM)
MIMO (MC-MIMO) systems. In MC-MIMO, joint power and
spectrum optimization is a non-convex problem, which was
recently shown to be NP-hard [5], i.e., its complexity grows
exponentially with the number of variables. Unfortunately, the
number of variables in a MC-MIMO network can be very
large. For instance, in a network of 10 links, 4 antennas per
node, and 10 sub-carriers, the problem involves 4× 4× 10×
10 = 1600 complex variables (or 3200 real variables).

Existing works on MIMO CR systems (e.g., [4] [6] [7] [8]
[9]) generally overlook the optimization over the frequency
dimension. Extending these works to multi-band MIMO CRNs
is not trivial. First, scalar-value algorithms used for a single-
band MIMO ad hoc network (e.g., bisection search in [9]) do
not work when searching for optimal vectors in multi-band
MIMO CRNs. Second, as shown in this paper, even without
beamforming the price-based optimal power allocation over
both frequency and spatial dimensions is not equivalent to a
general water filling problem (with multiple water levels) [10].
Hence, existing algorithms for MIMO (e.g., [10] [11] [12]
[13]) and SISO systems (e.g., [14]) are not applicable. Third,
applying single-band MIMO techniques to each individual
band of a multi-band MIMO CR system often leads to poor
performance, as shown later in this paper.
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Fig. 1. Power allocation (a) in frequency, (b) in space, (c) in both dimensions,
and (d) four transmit radiation patterns steering away from nearby unintended
receivers.

In [4] [8], a single-frequency cognitive MIMO network
was formulated as a noncooperative game. In these works,
the spectrum management and beamforming capability of CR
MIMO transmitters were not taken into account. Moreover,
pricing [15] was not used in [4] [8], hence a node maximizes
its throughout in a greedy manner. Simulations show that our
pricing technique greatly outperforms greedy mechanisms in
terms of network throughput and power efficiency. Relying
on variational inequality theory, matrix projection, and fixed-
point theorem, the authors in [4] [8] require the channel gain
matrices among CR nodes to meet certain conditions so that
the existence and convergence of the NE are guaranteed. In
other words, the NE existence and the convergence property of
their distributed algorithm depend on given channel conditions
that are not always met.

Motivated by the above, this paper develops a low-
complexity distributed algorithm that configures the transmit
antenna radiation directions and allocates powers for all data
streams so as to maximize the network throughput. Our main
contributions are as follows. First, we formulate the joint
power, spectrum allocation, and beamforming problem as a
noncooperative game [16]. We prove that the game always
admits at least one NE and we provide conditions for the
uniqueness of the NE.

Second, to improve the NE efficiency, we derive user-
dependent pricing policies that drive the game to a NE
whose network throughput is the same as that of a locally

optimal point of the nonconvex network-wide problem. By
capturing the interference from a transmitter to its unintended
receivers, the pricing policy guides the MIMO transmitters
to steer their beams away from nearby unintended receivers.
Via simulations, we observe that the proposed pricing policies
dramatically improve the network throughput over the greedy
approach (which does not use pricing). Our approach is also
more power-efficient than the greedy approach where users
use all of their power budgets to greedily maximize their
individual throughput.

Third, exploiting the strong duality in convex optimization,
we design a low-complexity distributed algorithm that allows
a node to compute its set of precoders (best response) in
constant time w.r.t. the antenna array size. We also develop a
centralized algorithm for the network optimization problem,
where nodes are assumed to work in a cooperative way
(cooperative game). Simulations show that the performance of
the (noncooperative) distributed algorithm is almost the same
as that of the (cooperative) centralized one.

Forth, we design full/generalized eigen MIMO precoding
for multi-channel systems. This differs from a large body of
works on MIMO precoder design (e.g., [6] [17] [18]), where
only one data stream is sent from a MIMO transmitter on
a single channel. In these works, precoders have a rank of
one and reduce to vectors. In generalized eigencoding, there
is no constraint on the rank of the precoding matrices [19],
i.e., several data streams can be sent simultaneously. Inspired
by the introduction of MIMO spatial multiplexing into ex-
isting networks (e.g., 802.11n allows up to four concurrent
multiplexed streams), generalized eigencoding has recently
attracted great interest.

In Section III, we present the network model and the prob-
lem formulation. The noncooperative game analysis, optimal
pricing policy, convergence proof, the distributed algorithm,
and a corresponding MAC protocol are given in Section IV.
The centralized algorithm is developed in Section V. Numer-
ical results are discussed in Section VI. Concluding remarks
and future work are provided in Section VII. Throughout
the paper, we use (.)∗ to denote the conjugate matrix, (.)H
to denote the Hermitian matrix transpose, tr(.) for the trace
of a matrix, det(.) for the determinant, and (.)T for matrix
transpose. Matrices and vectors are bold-faced.

III. PROBLEM FORMULATION

We consider a CRN that coexists with several primary
networks. The CRN consists of N CR links. Each CR node is
equipped with M antennas. The available spectrum consists of
K orthogonal frequency channels with central frequencies f1,
f2, . . ., fK . For simplicity, we also use fk to refer to the kth
channel. Let ΦN

def
= {1, 2, . . . , N} and ΨK

def
= {1, 2, . . . ,K}

denote the sets of CR links and channels, respectively. Each
CR user i can simultaneously communicate over multiple
channels. We impose a half-duplex constraint on all trans-
missions.

On a given channel, a CR transmitter can send up to M
independent data streams on its M antennas. Formally, for
channel fk let x

(k)
i be a column vector of M information

symbols, sent from node i to its destination node d(i). Each
element of x(k)

i is from one data stream. Let T̃(k)
i ∈ CM×M

denote the complex precoding matrix of node i on channel fk.
Then, the transmit vector is T̃

(k)
i x

(k)
i . We assume spectrum
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sharing among different CRs. Specifically, for channel fk, the
received signal vector y(k)

d(i) at receiver d(i) of link (i, d(i)) is
given by:

y
(k)
d(i) = H

(k)
d(i),iT̃

(k)
i x

(k)
i +

∑
j∈{ΦN\i}

H
(k)
d(i),jT̃

(k)
j x

(k)
j +Nk

(1)

where the first term in the RHS of (1) is the desired signal sent
from transmitter i. H(k)

d(i),i is an M ×M channel gain matrix
on channel fk from the transmitter i to d(i). Each element
of H

(k)
d(i),i is a multiplication of a distance- and channel-

dependent attenuation term and a random term that reflects
multi-path fading (complex Gaussian variables with zero mean
and unit variance). We assume a flat-fading channel. The
second term in (1) represents interference from other CR links
that link (i, d(i)) shares the channel fk with. Nk ∈ C

M is an
M×1 complex Gaussian noise vector with identity covariance
matrix I, representing the floor noise plus normalized (and
whitened) interference from PUs on channel k.

The Shannon rate of link (i, d(i)) on channel fk is [1]:

R
(k)
i = log det(I+ T̃

(k)H
i H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),iT̃

(k)
i ) (2)

where C
(k)
d(i) is the noise-plus-interference covariance matrix

at d(i) over channel fk, given by:

C
(k)
d(i) = I+

∑
j∈{ΦN \i}

H
(k)
d(i),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(i),j .

The total channel rate over all frequency bands of link i is:

Ri =
∑

k∈ΨK

R
(k)
i . (3)

We use P
(i)
s,k to denote the power allocated on channel k

(frequency dimension) at antenna s (space dimension) of CR
user i. For user i, the total power allocated on all frequency
bands and all antennas should not exceed a maximum power
budget Pmax. Consequently,

∑
k∈ΨK

M∑
s=1

P
(i)
s,k =

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmax. (4)

PU protection is provided in the form of database-
authorized access [20] and frequency-dependent power masks
on CR transmit powers. Note that the FCC [20] recently
imposed power masks even for idle channels, if such chan-
nels are adjacent to PU-active channels. Let Pmask

def
=

(Pmask(f1), Pmask(f2), . . . , Pmask(fK)) denote the power
mask on all channels, we require:

M∑
s=1

P
(i)
s,k = tr(T̃(k)

i T̃
(k)H
i ) ≤ Pmask(fk). (5)

Mathematically, the network throughput maximization
problem can be stated as follows:

maximize
{T̃(k)

i ,∀k∈ΨK ,∀i∈ΦN}

∑
i∈ΦN

Ri

s.t. C1:
∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmax, ∀i ∈ ΦN

C2: tr(T̃(k)
i T̃

(k)H
i )≤Pmask(fk), ∀k ∈ ΨK , ∀i∈ΦN .

(6)

IV. GAME THEORETIC DESIGN

The optimization problem in (6) is not convex. Thus, even
a centralized computation of the globally optimal solution is
prohibitively expensive. To develop a distributed algorithm,
we reformulate (6) as a noncooperative game and derive a
pricing function for each CR link that guarantees a locally
optimal solution.

A. Game Formulation
A noncooperative game is characterized by a set of players,

their action/strategy spaces, and corresponding utility/payoff
functions. For the above CRN, the set of CR links ΦN repre-
sents the set of players. The action space is the union of the
action spaces of various players, subject to constraints C1 and
C2 in (6). The action/strategy space for each player is the set of
all possible precoding matrices for the K frequency channels
in ΨK . Formally, an action from the action space of link i

is denoted by T̃i
def
= (T̃

{1}
i , T̃

{2}
i , . . . , T̃

(k)
i ), which can be

viewed as an M×KM block matrix, comprised of K M×M
matrices. Let T̃−i

def
= (T̃1, T̃2, . . . , T̃i−1, T̃i+1, . . . , T̃N ) be

the set of actions from all links, except link i. The utility
or payoff of player i for its action T̃i is mapped to link
i’s Shannon rate, which also depends on the selection of
precoding matrices from other CR links T̃−i:

Ui(T̃i, T̃−i)
def
= Ri. (7)

Due to the noncooperative nature of the game, the trans-
mitter of each link allocates its transmission power over both
space and frequency dimensions, and configures its radiation
pattern to maximize its own return. Formally, each CR user i
solves the following problem for its set of precoding matrices
T̃i:

maximize
{T̃(k)

i ,∀k∈ΨK}
Ui(T̃i, T̃−i)

s.t. C1’:
∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmax

C2’: tr(T̃(k)
i T̃

(k)H
i ) ≤ Pmask(fk), ∀k ∈ ΨK .

(8)

By solving the above problem, CR users implicitly interact
with each other through their choices of the precoding matri-
ces. Under some conditions, the game reaches a NE where no
user has an incentive to unilaterally deviate from. However,
as each CR user behaves selfishly, the resulting NE is often
far from the Pareto optimum, and the network throughput
can be low. The efficiency of the NE can be improved by
using appropriate pricing policies [15]. The utility function
with price is defined as:

U
′
i (T̃i, T̃−i)

def
= Ui(T̃i, T̃−i)− F (T̃i) (9)

where F (T̃i) is the pricing function for link i. Consequently,
we come up with the following noncooperative game with
pricing in which each player i ∈ ΦN solves the following
problem:

maximize
{T̃(k)

i ∀k∈ΨK}
U

′
i (T̃i, T̃−i)

s.t. C1’ and C2’ as in problem (8).
(10)

B. Pricing Policy
In economics, the pricing function can take various forms

to account for various marketing and pricing policies, e.g.,
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volume discount, coupon discount, etc. In the context of
network resource allocation, both linear (e.g., [14] [21]) and
nonlinear [22] pricing functions have been proposed to achieve
one of two purposes. First, pricing has been used to impose
desirable constraints by adjusting the cost/price of violation.
These constraints can be, for examples, transmission rate
demands [23] or interference constraints on CR transmissions
[24]. Second, pricing has been used to improve the efficiency
of a NE of a noncooperative game [14]. Pricing discourages
players from behaving selfishly and incentivizes them to work
in a cooperative way [15]. In this case, actions are not free
or equally expensive. Players have to pay different taxes or
prices for different actions, based on the level that these actions
adversely affect the social welfare. In this work, pricing serves
the second purpose.

We define the pricing function Fu(T̃i) as follows:

F (T̃i) = tr
[
T̃H

i AiT̃i

]
(11)

where

Ai =

⎡
⎢⎢⎢⎢⎣
A

(1)
i 0 · · · 0

0 A
(2)
i · · · 0

...
...

. . .
...

0 0 · · · A
(K)
i

⎤
⎥⎥⎥⎥⎦ (12)

is a KM×KM block diagonal matrix, consisting of K blocks
along its diagonal. The kth block A

(k)
i is an M ×M positive-

semidefinite matrix. Ai is referred to as the pricing-factor
matrix of CR link i and A

(k)
i is referred to as the pricing-

factor submatrix at channel k of link i. The following theorem
guarantees the existence of a NE of the game (10).

Theorem 1: There exists at least one NE for the noncoop-
erative game in (10).
Proof: See [25]. �

To guarantee a lower bound on the efficiency of the achieved
NE, we next derive a user-dependent pricing function. The
proposed pricing policy ensures that at the resulting NE, the
CRN throughput is at least as good as that of a locally optimal
solution to the network optimization problem (6).

Theorem 2: Let the kth matrix A
(k)
i of the block diagonal

pricing-factor matrix Ai in (12) be set to:

A
(k)
i =

∑
j∈{ΦN\i}

H
(k)H
d(j),iC

(k)
d(j)

−1
H

(k)
d(j),j [(T̃

(k)
j T̃

(k)H
j )−1+

H
(k)H
d(j),jC

(k)
d(j)

−1
H

(k)
d(j),j]

−1H
(k)H
d(j),jC

(k)
d(j)

−1
H

(k)
d(j),i.

(13)

Then, the CRN’s throughput at a NE of the game (10) equals to
that of a locally optimal solution of the network-wide problem
(6).
Proof: See Appendix A. �

The rationale behind the choice of pricing function in (11)
is to facilitate the derivation of the pricing factor matrix in
Theorem 2. To give a physical interpretation of the pricing
function, consider a special case where a CR node i uses
omnidirectional transmission and equally allocates power on
all frequency bands. In such a case, the precoders are diagonal
matrices with identical diagonal elements. Hence, the pricing
function in (11) is a weighted function of the powers P (i)

s,k al-
located on streams (s, k). The weights are exactly the diagonal
elements (s, k) of the pricing factor matrix A

(k)
i that captures

the per-unit price of possible interference on that spatial-

spectrum direction. Hence, the pricing function captures the
interference that a transmitter induces on unintended receivers
for a given set of precoders. It is worth noting that the per-
unit price of interference depends on the set of unintended
receivers. In other words, the interference price varies from
one “market” (user) to another.

To compute the pricing-factor matrix Ai in (13), a CR trans-
mitter i needs to obtain feedback regarding the interference-
plus-noise covariance, and the precoding and channel matrices
from other links. In practice, if the channel gain matrix from
i to d(j) is weak, i.e., H(k)

d(j),i ≈ 0, there is no need for d(j)
to send its feedback to i. Hence, i only gets feedback from
receivers d(j) that are within i’s vicinity. It is also worth
noting that the feedback information is locally available at
a receiver d(j) as a byproduct of its decoding process (e.g.,
successive interference cancelation (SIC) receivers [1]). The
kth block A

(k)
i of the pricing factor matrix in (13) is similar

to that in [9] for a single-band MIMO ad hoc network using
first-order Taylor series approximation.

C. Best Response: Optimal Antenna Radiation Directions and
Power Allocation

We now solve the individual utility optimization problem
(10), from which a CR user finds its best response given
others’ actions. Because problem (10) is convex, it can be
solved by standard methods, e.g., interior point [26], requiring
polynomial time w.r.t. to the number of variables. In [6],
the authors solved a similar problem using semidefinite pro-
gramming. However, the number of variables in (10) grows
quadratically with the number of antennas, and can be very
large. In this section, we develop an efficient algorithm whose
complexity is independent of the number of antennas.

Recalling the convexity of (10) and that the Slater’s condi-
tions can easily be shown to hold [26], strong duality holds
for problem (10), i.e., an optimal solution T̃i to (10) should
also solve the following dual problem:

DP : minimize
{α(k)

i ,γi≥0,∀k∈ΨK}
D(α

(k)
i , γi) (14)

where D(α
(k)
i , γi) is the dual function, defined as:

D(α
(k)
i , γi) = max

{T̃(k)
i ,∀k∈ΨK}

Li(T̃i, α
(k)
i , γi). (15)

In the above, Li(T̃i, α
(k)
i , γi) is the Lagrangian function of

the utility maximization problem at user i, written as (16),
where α

(k)
i and γi are nonnegative Lagrangian multipliers.

Theorem 3: The M × KM block matrix T̃i that solves
(10) (for the user’s best response) must have its kth block,
T̃

(k)
i in a form of a generalized eigen matrix of the matrices

H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i and A

(k)
i + (α

(k)
i + γi)I, where α

(k)
i

and γi are the optimal Lagrange multipliers of (10). In other
words, the following equations must hold ∀k ∈ ΨK for a
M ×M diagonal matrix Λ

(k)
i :

H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),iT̃

(k)
i = [A

(k)
i + (α

(k)
i + γi)I]T̃

(k)
i Λ

(k)
i .

(20)

Proof: See Appendix B. �
As discussed before, the precoding matrix T̃

(k)
i determines

both the directions of the antenna radiation as well as how
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Li(T̃i, α
(k)
i , γi) = U

′
i (T̃i, T̃−i)−

∑
k∈ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )− Pmask(fk)]− γi[

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax]

=
∑

k∈ΨK

{R(k)
i −tr(T̃(k)H

i A
(k)
i T̃

(k)
i )}−

∑
k∈ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )−Pmask(fk)]−γi[

∑
k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )−Pmax]

(16)

Li(T̃i, α
(k)
i , γi) =

∑
k∈ΨK

{
M∑
s=1

{log(1+P
(i)
s,kdiags(Π

(k)
i ))−P

(i)
s,kdiags(Ω

(k)
i )}+α

(k)
i Pmask(fk)+

γi
K

Pmax} (17)

D(α
(k)
i , γi) =

∑
k∈ΨK

{
M∑
s=1

{log diags(Π
(k)
i )

diags(Ω
(k)
i )

− 1 +
diags(Ω

(k)
i )

diags(Π
(k)
i )

}+ α
(k)
i Pmask(fk) +

γi
K

Pmax}

∀s, k such that diags(Π
(k)
i ) > diags(Ω

(k)
i ) > 0.

(18)

L(α
(k)
i , γi, p,λ) =D(α

(k)
i , γi)+

p

2
{(max{0, λ1−pγi})2−(λ1)

2}+ p

2

∑
k∈ΨK

{(max{0, λk+1−pα
(k)
i })2−(λk+1)

2} (19)

node i allocates its transmission power on different antennas
over channel k. Theorem 3 provides a class of matrices that the
solutions of (10) must belong to. This class gives the directions
that user i should point its antenna radiation to.

The next step is to find the optimal power allocation P
(i)
s,k

over the set of KM data streams. To ensure that T̃(k)
i belongs

to the class of matrices specified by Theorem 3, let:

T̃
(k)
i

def
= T

(k)
i P

(i)
k

1/2
(21)

where T
(k)
i is an M × M matrix with unit-norm column

vectors that satisfies (20). This matrix can be found by

normalizing the generalized eigen matrix T̃
(k)
i . P(i)

k

1/2
is a

square root matrix of the M ×M diagonal matrix P
(i)
k whose

diagonal entry (s, s) is the power allocated for sub-channel
(s, k), P (i)

s,k. We can verify that the expression of T̃(k)
i in (21)

satisfies (20).

As T̃
(k)
i is a generalized eigen matrix of matrices

H
(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i and A

(k)
i + (α

(k)
i + γi)I, T

(k)
i should

diagonalize each of the two matrices [27]:

T
(k)H
i [H

(k)H
d(i),iC

(k)
d(i)

−1
H

(k)
d(i),i]T

(k)
i = Π

(k)
i and

T
(k)H
i [A

(k)
i + (α

(k)
i + γi)I]T

(k)
i = Ω

(k)
i

(22)

where Π
(k)
i and Ω

(k)
i are M ×M diagonal matrices.

Note that although its columns have unit-norm, T(k)
i is not

an orthonormal matrix, as A
(k)
i is generally not similar to

I. Hence, T(k)
i (and T̃

(k)
i ) does not necessarily diagonalize

A
(k)
i . This observation is twofold. First, this points out that the

derivation in [12] does not hold in general. Second, although
optimal power allocation for KM data streams seems very
similar to a general water filling problem [10] with multiple
water levels (one water level per each frequency band), this
allocation cannot be determined by the algorithms in [10]
[11]. This is because T̃

(k)
i does not diagonalize A

(k)
i in (10),

and hence we cannot convert (10) to a general water filling
problem.

Plugging (22) into the Lagrangian function (16), we have
(17). The optimal power allocation P

(i)
s,k is obtained by equat-

ing the derivative of (17) w.r.t P (i)
s,k to zero:

∂Li(T̃i, α
(k)
i , γi)

∂P
(i)
s,k

=
diags(Π

(k)
i )

1 + P
(i)
s,kdiags(Π

(k)
i )

− diags(Ω
(k)
i ) = 0

(23)

Thus,

P
(i)
s,k = max

(
0,

diags(Π
(k)
i )− diags(Ω

(k)
i )

diags(Π
(k)
i )diags(Ω

(k)
i )

)
. (24)

Plugging (24) into (17), we obtain the dual function
D(α

(k)
i , γi) in (18). To solve the DP (14) for α

(k)
i , k =

1, . . . ,K , and γi (K +1 variables), we note that the problem
is convex. Hence, any stationary point is a globally optimal
solution. Moreover, as the objective function and constraints
of the primal problem (10) are continuous w.r.t. every entry
of T̃i, the dual function D(α

(k)
i , γi) is differentiable w.r.t.

α
(k)
i and γi [26]. Hence, a gradient algorithm can be used

to obtain the optimal Lagrangian multipliers α
(k)
i and γi by

searching for a stationary point of the augmented Lagrangian
of the DP in (19), where p is a positive penalty parameter
(for violating the constraints) and λ

def
= {λ1, . . . , λK+1} are

nonnegative multipliers.
Our gradient algorithm uses Armijo step in the steepest

descent direction. This search mechanism together with the
above analysis are summarized in Algorithm 1. By exploiting
the strong duality, Algorithm 1 needs to deal with only K+1
variables, instead of 2KM2 variables for the primal problem
(10). Before developing a centralized algorithm that serves
as a performance benchmark, we briefly discuss how a MAC
protocol can implement Algorithm 1.
D. MAC Protocol

Using either a predefined or frequency-hopping-based con-
trol channel, we can design a MAC protocol that executes
Algorithm 1. This protocol consists of three windows: Ac-
cess window, training window, and data window. The access
window allows CR nodes to contend for channels. These
nodes first exchange RTS and CTS packets. Unlike IEEE
802.11, our MAC design does not use RTS/CTS packets to
silence nearby nodes and reserve the transmission floor for the
upcoming transmissions. After this phase, CR pairs who have
just sent and received RTS/CTS packets are admitted to the
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training window. The training window is used by nodes to ex-
change/negotiate their transmit strategies (precoding matrices).
The signalling packets in either access or transmit windows
can also be used to embed training sequences to obtain CSI
matrices. The data window then follows with multiple data
packets, sent using negotiated transmission strategies. This
approach is referred to as a flow-based approach in [14].

Algorithm 1 : Distributed Algorithm for Power Allocation
and Spectrum Management

1: Input:
T̃−i = [T̃1(t + 1), ..., T̃i−1(t + 1), T̃i+1(t), ..., T̃N(t)]
with Gauss-Seidel iteration
T̃−i = [T̃1(t), ..., T̃i−1(t), T̃i+1(t), ..., T̃N(t)]
with Jacobi iteration

2: Initialize
T̃

(k)
i (t+ 1)← T̃

(k)
i (t), γi ← 0;α

(k)
i ← 0,∀k ∈ ΨK

3: while true do
4: β ← .7, σ ← .1 (%used in Armijo search)
5: λk ← .1∀k = 1 . . . (K + 1)
6: p← 1
7: while ∂L(α

(k)
i , γi, p,λ) �= 0 do

8: step← 0.1
9: D ← ∂L(α

(k)
i , γi, p,λ)

10: d← −step×D;m← 0
11: (%find Armijo step size)
12: while L(α

(k)
i , γi, p,λ) − L(α

(k)
i + d, γi + d, p,λ) ≤

−σβmstep∂LD do
13: step← step× β;m← m+ 1
14: d← −step×D
15: end while
16: α

(k)
i ← α

(k)
i + d, γi ← γi + d

17: end while
18: if min(α

(k)
i , γi,∀k ∈ ΨK) ≥ 0 break

19: ∀k ∈ ΨK :
20: λk ← λk − pα

(k)
i if λk − pα

(k)
i > 0 else λk = 0

21: λ1 ← λ1 − pγi if λ1 − pγi ≥ 0 else λ1 = 0
22: p← p× μ (%μ ≥ 1, increase cost of violation)
23: end while
24: Plug γi, α(k)

i into (20) (Theorem 3) to find T
(k)
i

P
(i)
k is found from (22) and (24). T̃(k)

i is found from (21).
25: RETURN T̃

(k)
i (t+ 1), ∀k ∈ ΨK at time (t+ 1)

To reduce the overhead of the training window, one may
relax the time scale of recalculating the pricing-factor matrix,
trading off throughput for less frequent updates. One can even
omit the training window altogether by having nodes embed
updated information into every data and ACK packet. Then,
upon receiving an ACK for each data packet, a transmitter
recomputes its pricing-factor matrix. This method is referred
to as packet-based [28] [14].

An important issue for protocol designers is how to set the
size of the training window. This depends on the convergence
speed of the updating process. To ensure that the training
window is not too long, the updating and negotiation process
must converge. During the training window, a node can use
either Gauss-Seidel (sequential) or Jacobi (parallel) iterations
(see Algorithm 1) to update its precoding matrices. Although
we cannot prove the convergence under the Jacobi iteration,
simulations show that the distributed algorithm converges
even faster with Jacobi iterations than with Gauss-Seidel.
Convergence under the Gauss-Seidel iteration is claimed in
the following theorem.

Theorem 4: Under the sequential updating procedure
(Gauss-Seidel), Algorithm 1 drives the game (10) to its NE.
Proof: See [25]. �

In [8] [11], the authors map the throughput maximization
game (of a single-frequency MIMO CRN) into a variational
inequality problem (see [29] and therein references for a
tutorial on variational inequality theory) for the purpose of
providing the convergence and uniqueness conditions of the
NE. Intuitively, the game converges to a unique NE if there
is not too much interference at a receiver and all channel
matrices are full column-rank. The former condition requires
transmitters to adjust their transmission parameters and the
latter is not always guaranteed. However, using our proposed
pricing policy and the Gauss-Seidel procedure, the game (10)
always converges to a NE without requiring transmitters and
channel matrices to meet any additional requirements.

Both Gauss-Seidel and Jacabi updating procedures are syn-
chronous, requiring CR nodes to be in sync. This may not
always be possible. By contrast, using asynchronous update,
some players, at some iterations, may not update other players
with their strategies (e.g., due to packet collisions). Using
variational inequality theory, the mean-value theorem, and
following the routine in [8], we can provide conditions under
which the game (10) converges to a unique NE under either
synchronous or asynchronous updates (we omit the detailed
manipulation due to space limitation).

Theorem 5: The game (10) always converges to a unique
NE if all channel matrices are full column-rank and the
spectrum radius of the matrix J−1Γ is less than 1, where J is
an N ×N diagonal matrix with diagonal elements σi and Γ
is a N ×N matrix of elements κi,j with the equation at the
top of the following page.

The operators eigmin(.) and eigmax(.) give the smallest and
largest eigenvalues of a matrix, respectively.

V. CENTRALIZED ALGORITHM

A centralized algorithm can be obtained by formulating the
problem as a cooperative game, where a network operator
controls the behaviors of all players in order to maximize the
network throughput. In this section, we use the augmented
Lagrangian multiplier method to derive such a centralized
algorithm. We rewrite the network-wide problem (6) as (25).

The augmented Lagrangian [26] of (25) is given in (26),
where p is a positive penalty parameter (for violating the
constraints), and α

(k)
i and γi are nonnegative Lagrangian

multipliers. At a local optimal solution, (27) holds. The first
term in (27) is computed in (33). Its second term is given by
(30). Since ci and ck,i are continuously differentiable w.r.t.
every entry of T̃, the third and fourth terms in (27) are
also continuously differentiable [26]. Their derivatives are as
follows:

∂{(max{0, γi + pci})2}
∂T̃

(k)∗
i

=

{
0 if γi + pci ≤ 0

2p(γi + pci)T̃
(k)
i

∂{(max{0, α(k)
i + pck,i})

2}
∂T̃

(k)∗
i

}=
{

0 if α(k)
i + pck,i ≤ 0

2p(α
(k)
i + pck,i)T̃

(k)
i

We use the gradient search algorithm with Armijo step size
[26] to find (T̃, α

(k)
i , γi, p) such that (27) holds for all bands

k and all users i. The details of the centralized algorithm
is presented in Algorithm 2. We emphasize that the network
throughput may vary from a locally optimal point to another.
Hence, to account for such phenomenon, one can run the
simulations several times with different initializations and take
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σi
def
=min

k∈ΨK

{eig2min

⎛
⎜⎝H(k)H

d(i),i

⎛
⎝I+∑

j∈ΦN

Pmask(fk)H
(k)
d(j),iH

(k)H
d(j),i)

⎞
⎠

−1

H
(k)
d(i),i

⎞
⎟⎠}

κj,i
def
= max

k∈ΨK

(
eigmax

(
H

(k)
d(j),iH

(k)H
d(j),i

)
eigmax

(
H

(k)H
d(i),iH

(k)
d(i),i

))
∀i �= j ∈ ΨN and κj,i = 0 if i = j

minimize
{T̃(k)

i ,∀k∈ΨK ,∀i∈ΦN}
− ∑

i∈ΦN

Ri

s.t. ci=
∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )−Pmax ≤ 0, ∀i ∈ ΦN

ci,k= tr(T̃(k)
i T̃

(k)H
i )−Pmask(fk) ≤ 0, ∀k ∈ ΨK , ∀i ∈ ΦN

(25)

L(T̃, α
(k)
i , γi, p) =−

∑
i∈ΦN

R(i)+
p

2

∑
i∈ΦN

{(max{0, γi+pci})2−(γi)
2}+ p

2

∑
i∈ΦN

∑
k∈ΨK

{(max{0, α(k)
i + pck,i})2−(α

(k)
i )2}

(26)

0 =
∂L(T̃, α

(k)
i , γi, p)

∂T̃
(k)∗
i

=−
∑

j∈ΦN\i

∂R
(k)
j

∂T̃
(k)∗
i

− ∂R
(k)
i

∂T̃
(k)∗
i

+
p

2
{∂{(max{0, γi + pci})2}

∂T̃
(k)∗
i

+
∂{(max{0, α(k)

i + pck,i})2}
∂T̃

(k)∗
i

} (27)

xi=
[
�[vec(T̃i)]

T
,�[vec(T̃i)]

T
]T

=

[
�[vec(T̃(1)

i )]
T
, ...,�[vec(T̃(K)

i )]
T
,�[vec(T̃(1)

i )]
T
, ...,�[vec(T̃(K)

i )]
T
]T

(28)

∇xL = 2

[
�[vec( ∂L

∂T̃
(1)∗
1

)]
T

, ...,�[vec( ∂L

∂T̃
(K)∗
N

)]
T

,�[vec( ∂L

∂T̃
(1)∗
1

)]
T

, ...,�[vec( ∂L

∂T̃
(K)∗
N

)]
T
]T

(29)

∂R
(k)
i

∂T̃
(k)∗
i

=H
(k)H
d(i),i(C

(k)
d(i)+H

(k)
d(i),iT̃

(k)
i T̃

(k)H
i H

(k)H
d(i),i)

−1H
(k)
d(i),iT̃

(k)
i (30)

the average throughput. The running time for Algorithm 2 can
be high as it involves NKM2 complex variables (or 2NKM2

real ones). To implement Algorithm 2, we use the following
isomorphism mapping from a complex matrix to a vector of
real variables. The vector of variables x = [(xT

i )
N
i=1]

T , with
xi in (28) and the corresponding Lagrangian gradient in (29).

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the dis-
tributed algorithm using MATLAB simulations. We compare
the network throughput of the distributed algorithm with the
centralized one and the greedy algorithm, where nodes act
selfishly to maximize their own rates. The greedy algorithm
is exactly the same as the distributed one except that the
pricing-factor matrix Ai is a null matrix. Another algorithm
called uniform is obtained by uniformly dividing a node’s
total transmit power over all available channels and then
applying the single-band approach in [9] for each channel.
We emphasize that the uniform algorithm neither meets the
optimality conditions (38) of the network problem (6) nor
solves the per-user problem (10).

Since the number of variables in the centralized algorithm
is quite high (2NKM2), its running time can be very long. To

compare the four algorithms, we consider a CRN of 10 links,
3 channels (f1 = 2.4 GHz, f2 = 2.7 GHz, and f3 = 3 GHz
with identical channel bandwidth of 1 MHz), and 4 antennas
per node. The results are averaged over 30 runs. In each run,
links are randomly placed in a square of length 100 meters.
We take Pmax = 2 W and Pmask = 0.8 W for all channels.
The channel fading is flat with attenuation factor of 2. The
spreading angles of the signal at received antennas vary from
−π/5 to π/5. For the lowest frequency, we assume that the
received power at a reference distance of 100 meters reduces
by 10 dB compared with the transmit power. To account for
the frequency-dependent attenuation factor, we assume that the
received power at the reference distance decreases 2 dB more
if the frequency increases by 300 MHz. The PU interference
is treated as floor noise that together with the thermal noise
is normalized to a unit variance.

A snapshot of the network topology and antenna radiation
patterns at steady state over channel f2 is shown in Fig.
2. We can visually notice that the transmitters under the
distributed and centralized algorithms often steer their beams
away from neighboring receivers (three representative pairs of
transmitter and a nearby unintended receiver are highlighted
in ovals). This results from attempting to minimize the price
function (11). It can also be seen that the antenna patterns
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Algorithm 2 : Centralized Algorithm

1: Initialize
T̃

(k)
i ← I, γi ← 0;α

(k)
i ← 0, ∀k ∈ ΨK ,∀i ∈ ΦN

2: while true do
3: β ← .7, σ ← .1 (%used in Armijo search)
4: γi ← 0, α

(k)
i ← 0,∀k ∈ ΨK ,∀i ∈ ΦN

5: p← 1
6: while ∂L(T̃, α

(k)
i , γi, p) �= 0 do

7: step← 0.1
8: D ← ∂L(T̃, α

(k)
i , γi, p)

9: d← −step×D;m← 0
10: (%find Armijo step size)
11: while L(T̃, α

(k)
i , γi, p) − L(T̃ + d, α

(k)
i , γi, p) ≤

−σβmstep∂LD do
12: step← step× β;m← m+ 1
13: d← −step×D
14: end while
15: T̃← T̃+ d
16: end while
17: if max(ci, ci,k,∀k ∈ ΨK ,∀i ∈ ΦN ) ≤ 0 break
18: ∀k ∈ ΨK ,∀i ∈ ΦN :
19: γi = γi + pci if γi + pci ≥ 0 else γi = 0
20: α

(k)
i = α

(k)
i + pck,i if α

(k)
i + pck,i ≥ 0 else α

(k)
i = 0

21: p← p× μ (%μ ≥ 1, increase cost of violation)
22: end while
23: Return T̃

(k)
i , ∀k ∈ ΨK ,∀i ∈ ΦN

of the distributed and centralized algorithms are very similar,
suggesting the two algorithms may converge to the same point.

Fig. 3(a) depicts the network throughput under four algo-
rithms (distributed, centralized, greedy, and uniform) versus
the number of iterations. Although the network performance
at the converged points of the distributed and centralized
algorithms change with their starting points, after averaging
over multiple runs with different initializations, the throughput
of the distributed algorithm is almost the same as that of the
centralized one. We also notice that by using the proposed
pricing policy to regulate interference, the distributed algo-
rithm has almost twice the throughput of the greedy one. The
uniform algorithm also improves network throughput over the
greedy one but it remains inferior to our distributed algorithm.
This is because the uniform algorithm evenly allocates power
over all channels and does not optimize over the frequency di-
mension, while the distributed algorithm attempts to optimize
the antenna radiation patterns and power allocation over both
space and frequency.

We say that an algorithm converges if the normalized
difference in throughput between two consecutive iterations
is less than a given threshold (i.e., 3%). The convergence
speed of the distributed algorithm versus the number of links
is shown in Fig. 3(b).

Fig. 3(c) depicts the network throughput under the dis-
tributed and greedy algorithms versus the number of links. The
distributed algorithm consistently provides higher throughput
than the greedy and uniform algorithms. The improvement
becomes more significant with more links. That is because
as node density increases (higher number of links), network
interference increases, so interference management becomes
more critical in improving the throughput.

To evaluate the energy efficiency of the four algorithms, we
record in Table I the average power consumption and power
allocation per node for various algorithms. Without regulating
interference, nodes under the greedy algorithm selfishly com-
pete for their own throughput by always using their maximum
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Fig. 2. Antenna radiation patterns on channel 2 under the greedy, distributed,
and centralized algorithms.

power (2 W), leading to the highest power consumption among
the four algorithms. The power consumption of the distributed
algorithm is comparable with that of the centralized and
uniform ones, and 10% less than that of the greedy one. Power
allocation over both space and frequency at a representative
node under the distributed algorithm is shown Table II. From
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Fig. 3. (a) Network throughput vs. iterations, (b) convergence speed of the
distributed algorithm, (c) network throughput vs. the number of links.

Tables I and II, we notice that the inequality constraints in
problems (10) and (6) are not active at their solutions. That is
because transmitting at high power may be expensive due to
the proposed pricing method.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we investigated the spectrum sharing problem
in a multi-antenna CRN. By adjusting the precoding matrices,
we optimized the allocation of power over both the frequency
and space dimensions while managing the antennas’ radiation
beams to reduce network interference, aiming at maximizing

TABLE I
AVERAGE POWER CONSUMPTION (IN WATTS) ALLOCATED OVER

DIFFERENT CHANNELS.

Channels Centralized Greedy Distributed Uniform
f1 0.768 0.71 0.76 0.658
f2 0.643 0.66 0.61 0.556
f3 0.422 0.63 0.44 0.627

Total 1.823 2.00 1.81 1.831

TABLE II
POWER ALLOCATION (IN WATTS) AT A NODE OVER SPACE AND

FREQUENCY DIMENSIONS UNDER THE DISTRIBUTED ALGORITHM.

Antennas f1 f2 f3
1 0.135 0.085 0.15e − 10
2 0.209 0.386 0.02
3 0.550 0.314 0.06e − 10
4 0.194 0.035 0.305

Total=1.913 0.788 0.8 0.325

network throughput. Using game theory and the strong du-
ality in convex optimization, we designed a low-complexity
distributed algorithm that achieves the same throughput as a
locally optimal point of the non-convex centralized network
problem. The key idea behind the algorithm is the introduction
of a diagonal block pricing-factor matrix for each CR. This
matrix regulates network interference by encouraging CRs
to work in a cooperative manner. Simulations show that the
proposed algorithm dramatically improves network throughput
and achieves higher energy efficiency, compared with existing
solutions. As a future work, one can extend the proposed
pricing policy to coordinated multi-cell systems and also
heterogeneous spectrum sharing networks in which the sets of
available frequencies at nodes are different. Moreover, because
CSI is vulnerable to estimation errors, one may wish to design
a robust game model to deal with partial CSI.

APPENDIX A
PROOF OF THEOREM 2

The achieved NE is characterized by the solutions of all
N per-user optimization problems (10). Since the individual
utility optimization problem is convex, a locally optimal
solution is globally optimal. The optimal solution can be found
by solving its K.K.T. conditions [26], given by:

∂Li(T̃i, α
(k)
i , γi)

∂T̃
(k)∗
i

=
∂R

(k)
i

∂T̃
(k)∗
i

−A
(k)
i T̃

(k)
i −(α

(k)
i +γi)T̃

(k)
i =0,∀k

tr(T̃(k)
i T̃

(k)H
i )− Pmask(fk) ≤ 0, ∀ k ∈ ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )− Pmask] = 0, ∀ k ∈ ΨK∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax ≤ 0

γi[
∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )− Pmax] = 0

(31)

The Lagrangian function of the network optimization problem
(6) is in (32), where T̃

def
=
⋃
i

T̃i, the set of precoding matrices

over all users and frequency bands.
All the stationary (or locally optimal) points of the network
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L(T̃, α
(k)
i , γi) =

∑
i∈ΦN

∑
k∈ΨK

R
(k)
i −

∑
i∈ΦN

∑
k∈ΨK

α
(k)
i [tr(T̃(k)

i T̃
(k)H
i )− Pmask(fk)]−

∑
i∈ΦN

γi[
∑

k∈ΨK

tr(T̃(k)
i T̃

(k)H
i )−Pmax] (32)

∂R
(k)
j

∂T̃
(k)∗
i

= −H
(k)H
d(j),iC

(k)
d(j)

−1
H

(k)
d(j),iT̃

(k)
i +H

(k)H
d(j),i(C

(k)
d(j) +H

(k)
d(j),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(j),j)
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problem must satisfy its K.K.T. conditions:
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To guarantee that the game (10) with the price function defined
in (11) converges to a NE at which the CRN’s throughput is
the same as that of a locally optimal solution to problem (6),
the NE of the game (10) must be a stationary point of problem
(6). In other words, the K.K.T. conditions of (6) have to hold at
the stationary point of (10). For that to happen, the following
equality must hold (through comparing conditions (31) and
(38)):
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To compute
∂R

(k)
j

∂T̃
(k)∗
i

in (33), recall (2) and note that:
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The last equality in (33) follows by applying the Woodbury
identity [30] to (C

(k)
d(j)+H

(k)
d(j),jT̃

(k)
j T̃

(k)H
j H

(k)H
d(j),j)

−1. Plugging
(33) into (39), we get (13). One can also easily verify that the
derived A

(k)
i matrix is positive-semidefinite. Additionally, if

the pricing-factor has the form (13), the achieved NE meets
the K.K.T. conditions of the network-wide problem (6). �

APPENDIX B
PROOF OF THEOREM 3

Let’s rewrite the Lagrangian function of (10) as in (34), then
using the Cholesky decomposition [A

(k)
i + (α

(k)
i + γi)I] =

E
(k)
i E

(k)H
i . We have (35), where T̄

(k)H
i = T̃

(k)H
i E

(k)
i .

As Pmax and Pmask(fk) are predetermined values and from
(35), Li is maximized if we maximize L′

i in (36). Following
the routine of using Hadamard inequality (e.g., [9], [19]),
applying the Hadamard’s inequality [31] to the second term
of (36), we have (37), where diags(.) is the (s, s) diagonal
element of a matrix (.).

The equality happens when
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diagonal matrix. This is the case if there exists an
orthonormal matrix T̄
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where Λ
(k)
i is a M ×M diagonal matrix.

Multiplying both sides of (40) by T̄
(k)
i , then E

(k)
i , we have:
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Recall that T̄
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i and the above Cholesky

decomposition we have:
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This concludes the proof. �
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