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Abstract—The need for Artificial Intelligence algorithms for
future Cognitive Radio (CR) systems is unavoidable. For a CR
to operate as best as possible it must identify who is present
in spectrum of interest, and what they are doing (i.e. jamming,
communicating, rogue transmission, etc.). Using this information,
a CR can accordingly decide what to do next. Furthermore,
being able to determine which wireless protocols are occupying
spectrum is an important ability in heterogeneous wireless
networks. In this work, we investigate the robustness of various
Neural Network (NN) algorithms for classification of wireless
protocols when looking at base-band In-phase/Quadrature (IQ)
data without needing to decode. We propose a spectrum sensing
algorithm based on NNs or other similarly behaved classifica-
tion algorithms for identifying wireless technologies occupying
spectrum. In previous literature, using base-band IQ data,
researchers have shown that NN models can classify different
modulation formats with promising accuracy. This work explores
the potentials, usage, and limitations of using base-band IQ data
for classifying various wireless network protocols that employ
the same modulation format.

Index Terms—Cognitive Radio, Neural Networks, Signal Clas-
sification, Wireless Protocols

I. INTRODUCTION

Signal classification is an essential addition for more ef-
fective cognitive radio (CR) technology as spectrum becomes
increasingly scarce. It is common practice in modern CRs to
use spectrum sensing as means to avoid occupied spectrum
[1]. Modern wireless protocols operate on unlicensed shared
spectrum, and being able to identify other existing tech-
nologies on the spectrum can improve friendly coexistence.
To further improve the performance of a CR, it must be
able to identify what is present in spectrum of interest, and
act accordingly. When identifying what’s in the spectrum, it
can be complex and often infeasible to decode what’s being
observed, so a CR will have to settle for simply identifying the
signal. A significant number of wireless protocols employ a
form of orthogonal frequency division multiplexing (OFDM)
which makes it difficult for existing modulation classification
algorithms to differentiate between protocols.

This work explores the use of various neural network
(NN) architectures for classifying wireless protocols of similar
modulation formats. We analyse two main categories of NN:
feed forward NN (FNN), and convolutional NN (CNN). We
found that a specific kind of CNN known as a residual NN

(ResNet) [2] was overall the most effective in classifying
wireless protocols.

There are 2 main forms of signal classification: likelihood
base, and feature based. Many likelihood based methods make
optimal decisions, however they are often too computationally
complex for real time implementation. Feature based classi-
fication usually involves extraction of features from a signal
(i.e. bandwidth, carrier frequency, high order statistics, etc.),
and use those features as inputs to some kind of classification
algorithm which could be machine learning or something else.
This is known as expert feature based classification.

We and others speculate that it may be better for a machine
learning model to formulate it’s own features to use in the clas-
sification process. There exist some works [3], [4], [5], [6] that
explore this possibility, and they achieve competitive results
with other traditional feature based approaches. However, we
have not seen any prior work analyzing the potential or usage
of machine learning in classifications of wireless protocols. In
section V, we present a technique for applying NNs in real-
time systems to identify when wireless protocols are present
in the spectrum.

When multiple protocols are utilized in the same portion
of spectrum being able to identify who else is out there can
be crucial to friendly co-existence. There have been multiple
works that describe the challenges in coexistence of multiple
wireless technologies in the same bands [7] [8], and it is
difficult for devices designed for one protocol to identify
signals from another protocol.

In military applications where different protocols are co-
existing, but not in a friendly manner, knowing if someone else
is in the spectrum at a very low signal to noise ratio (SNR)
can be important for radio location of enemy transmitters. A
CR that has some prior knowledge of the wireless behavior
of the protocols, or their operators, can even formulate and
appropriate transmission plan to maximize throughput and
secrecy.

Initially, in an effort to explore the robustness of NNs
in this task we tested classification accuracy when passing
randomly place windows of 1024 samples within frames or
between frames to the NN, as well as testing the performance
when only looking at the beginning of packets. Furthermore,
we passed the IQ data from MATLAB waveform generations



through various channel models such as Rician, Rayleigh, and
COST2100 [9]. NNs have been shown to not perform well
under such multi-path channel models [4], and our simulations
confirm this. As a result, we only analyze additive white
Gaussian noise (AWGN) channels in this paper.

The organization of this paper is as follows. In section II
we discuss related signal classification algorithms and works
that could benefit by employing the algorithm we present.
Section III provides an overview of NN algorithms we analyze.
The algorithm we present in this paper is described in V.
Performance analysis of the algorithm and other discussion is
found in section VI. Section VII concludes with a brief recap
of the algorithm, and other key takeaways from our results.

II. RELATED WORK

There has been extensive literature in recent years regarding
classification of modulation formats using machine learning.
[4] analysed the performance of various NN architectures and
their hyper-parameters in modulation classification with base-
band IQ samples. The authors of [3] show that classification
accuracy of modulations can be improved through specialized
training strategy, where they train a single NN in stages to
differentiate modulation formats in a hierarchical manner. [6]
also explored a hierarchical manner of modulation classifica-
tion, but these authors used multiple NNs each specializing
in narrowing down the modulation class which ultimately
performed better than [3].

Few existing works have explored protocol classifications as
well. [10] explores classifying between slotted ALOHA and
Time Division Multiple Access (TDMA) by using power mean
and power variance over time as features to be classified with
a Support Vector Machine (SVM). Some works such as [5]
have explored using IQ data with deep learning algorithms.
to classify different applications being used under the same
communication protocol.

III. NEURAL NETWORK ARCHITECTURES

In this section, we will briefly describe the various NN
architectures explored in this work. This section only gives
a very brief discussion of what NN techniques are explored in
this paper, and we encourage the reader to look in reference
[11] if they desire more explanation of these techniques.

Depending on the problem, a user must decide what form
the output of their NN model will take on. For a problem
where a user wants to classify between two classes, it is
common to use a single neuron as the output, with a sigmoid
activation function. For example, if there are two classes, 0 and
1, and if an input to an NN with a single sigmoid output neuron
outputs .7, the user would classify this input as belonging to
class 1. For a two class problem with a sigmoid output the
most common loss used is binary cross-entropy, however is is
not uncommon to see other loss functions used.

Most NN are trained using the back-propagation algorithm.
Back-propagation is an efficient algorithms to calculate the
gradient of multiple variables in a large complex equation.
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Fig. 1. Receive chain with indication of where to place a wireless protocol
classifier.

For NN, it is used to calculate the gradient of weights and
biases with respect to the loss.

In this work, we have three classes to choose from, and we
only want to pick one. This calls for the softmax output layer.
In classification, the softmax output layer is designed for each
output neuron to correspond to each of the classes in question,
and the sum of all outputs is always equal to 1. To train with
softmax as the output layer it is typical to use one-hot encoded
vectors as the desired output from the NN. A one-hot encoded
vector is vector of all Os, and one 1 to indicate the desired
class to identify. The output of a softmax layer can be viewed
as a vector of probabilities. Each element in the vector is the
probability that the input belongs to the class corresponding to
it’s respective output neuron. The largest output from the layer
is selected as the class. The loss typically used with softmax
output layers is categorical cross-entropy.

A deep FNN consists of many dense layers. A dense layer is
multiplying the input to the layer by a matrix of weights, then
adding that result to a vector of biases, then passing the results
into an element-wise nonlinear activation function (such as
ReLU, sigmoid, tanh, ect.). That result is then passed into
other layers depending on the network architecture.

A CNN consists of convolutional layers. A convolutional
layer is a simple convolution operation where we convolve the
input to the layer with one or more filters of trainable weights,
and the weights are modified according to their respective
gradients during training.

IV. DATA COLLECTION

In this paper, to demonstrate the ability of NNs to clas-
sify between wireless protocols we classify between LTE,
WiFi, and 5G frames. We collect baseband 1Q samples of
the waveforms for these frames using MATLAB toolboxes.
MATLAB has toolboxes that contain waveform generation
of all these three target classes: LTE, WiFi, and 5G. Within
these toolboxes, various parameters are randomized for the
signals. The idea behind doing this is that if we get as much
variation within the different classes as possible, we can prove
just how effective NNs are in finding the differences anyway.
Additionally, in practice a user will not have control over
signals that belong to different protocols, so being able to
identify a large variety within those protocols is important.
Table I displays all of the parameters that were changed and/or
randomized within the protocols. All of the protocols were
constrained to work for single-input-single-output (SISO) only.

V. SYSTEM DESIGN

FNNs and CNNs are constricted to a finite view of signals.
As a result, it is best if they focus on the beginnings of



Protocol Parameter Possible Values
RO,R.1,R2,R3,R4, R5 R6 R7RS8 R, RI0,R.11,
RC R.12,R.13,R.14,R.25,R.26, R.27, R.28, R.31-3A, R.31-4,
R.43,R.44,R.45, R.45-1,R.48, R.50, R.51, R.6-27RB, R.12-
9RB, R.11-45RB
CellRefP 1
LTE PDSCH # Layers 1
CFI 1,2,3
Ng Sixth, Half, One, Two
PHICHDuration Normal, Extended
SSC 0,1,2,3,4,5,6,7,8,9
Cell ID 0,1,2,...,99,100
# of Subframes 1
SSPB Block Case A, Case B
attern
SSB Transmitted Random Binary Vector of Length 4
SSB Periodicity 5,10, 16, 40, 80
Cyclic Prefix Normal, Extended
BWP Size 25,50
BWP Separation 10, 50
PDSCH
Modulation QPSK, 16QAM, 64QAM, 256QAM
PDSCHRV Random Ternary Vector of Length 4
5G Sequence
PDSCH Mapping AB
Type
DM-RS First 23
Symbol Position ’
# Front Loaded 12
DM-RS Symbols ?
Other DMRS
Symbol Positions 0,1,2,3
PDSCH
Scrambling 0,1,2,...,65535
Identity
PDSCH
Scrambling 0,1
Initialization
MCS 0,1,2,3,4,5,6,7,8,9
APEP Length 279,210, 211
Guard Interval Short, Long
Wi-Fi Group ID 0, 63
Partial AID 0,1,2,...,511
Channel CBW20, CBW40, CBWS0, CBW160
Bandwidth
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PROTOCOL PARAMETER RANDOMIZATION OPTIONS
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Fig. 2. Variable sizes of FNN for 1024 1Q samples under AWGN

frames as they are the most unique and consistent part of the
waveform for most protocols. Figure 1 shows where a user
would implement any classification algorithm designed to look
at a finite number of samples for the purpose of identifying
wireless protocols. After a signal is sampled a window of an
application specigic size and type (we explore rectangular) will
shift with every received sample, behaving effectively like a
queue of IQ samples. In this work, we focus on NNs, however
users can employ any classification algorithm that looks at
constant input vector sizes as they see fit.

The classification algorithm must be trained offline. Users
should collect IQ data at their target sample rates offline,
and be able to identify the beginning of frames, and label
which protocols they belong to manually. To train the machine
learning algorithm, the user will only take a window from
the beginnings of the recorded frames and form them as
input vectors to the machine learning algorithm for training.
Once trained, the user will employ their protocol classifier
as depicted in figure 1. The classifier will look at a sliding
window of IQ samples directly from an analog to digital
converter (ADC), and the classifier will decide whether or not
certain protocols are present in the spectrum.

There is significant variation in performance if the samples
the network is looking are not at the beginning of a frame.
When training and testing CNNs and FNNs on random lo-
cations of frame, we only saw a 40% classification accuracy
under the best conditions. With 3 classes, 33% accuracy is as
good as random guessing. In Figure 3, we see what happens
when a window slides across a couple of frames as a FNN
processes the window. Incorrect output neurons tend to get
very close to 1, however they never surpass the maximum
output we observe for the correct class. When implementing
a neural network for protocol classification, the user must
generate their own plots similar to Figure 3 with their own
measurements and decide a threshold for each output neuron.
When the threshold is exceeded, that is indication that a
particular protocol is present in the spectrum.

VI. PERFORMANCE ANALYSIS

In this section we analyze the testing accuracy of the NNs.
Training time never exceeded 1 hour on a relatively slow
computer without a GPU. All NN design, training, and testing
was done using the Keras library within Tensorflow.

In Figure 2 we simulate probability of correct classification
on the beginning of frames as SNR increases in an AWGN
channel model. We see that there isn’t very much gain in
performance when increasing the depth or the width of the
FNN. It is worth noting that classification accuracy with a FNN
with one hidden layer and a width of 5 neurons performed
slightly worse than a width of 20 neurons. The accuracy
between width 40 and 60 are the same. We also see that
increasing the depth of the network did not have any effects
on performance improvement.

NN can be extremely computationally complex, and reduc-
ing the size of a NN reduces the computational complexity.
In Figure 4 we show probability of correct classification vs
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Fig. 3. FNN outputs as the sliding window shifts across a couple of frames. From left to right, LTE, Wi-Fi, ang 5G are analyzed shown respectively.
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Fig. 4. Comparing classification accuracy under AWGN for different window
sizes using a FNN of depth 1 and width 20
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Fig. 5. Comparing varying CNN architectures with and without pooling on
1024 IQ samples under AWGN. Blue curves denote pooling is present in the
NN.

SNR on the beginning of frames, as window size decreases.
A different FNN of depth 1 and width 20 was trained and
tested on their respective window sizes to generate the resulte
in Figure 4. As one would expect there is a decrease in
performance as the window size decreases, because there is
less information for the NN to learn from. The convergence
to 100% classification accuracy with respect to SNR only
changes by a few dB.

It is common in CNNs to use max pooling. A max pooling
layer takes a sliding window across it’s input, and throws away
all input from each window that are not the maximum in their
respective windows. For the case of IQ samples, we choose
the max based on magnitudes of the samples. In Figure 5 we
show the effects of using max pooling windows of size 2 and
3 after convolutional layers when AWGN is the only channel
impairment. As an example to explain the notation in Figure 5,
3x10 conv means that 3 parallel convolutional filters of 10 taps
are used in that layer. Max pooling clearly does not perform as
well at low SNR, but CNNs with max pooling do converge to
100% classification at around the same SNR regions as CNNs
without max pooling. Though performance is not quite as good
at low SNR with pooling, it is important to note that max
pooling significantly reduces computational complexity in a
NN. We recommend users employ max pooling, because they
still converge to 100% classification accuracy at the same SNR
as those without, and they significantly reduce computational
complexity.

ResNets were first presented in [2] for image classification.
Since then they have been one of the most popular NN
architectures, because of their great performance across many
tasks. The logic behind why ResNets are so effective is
because they keep residual information of early layers all the
way throughout a deep NN through addition. This allows the
back-propagation algorithm to easily calculate the gradients
for early layers, while still getting the benefits of having a deep
NN. We show the performance of a few ResNet architecture
in Figure 7. Since there is virtually no gain in increasing the
depth of the network, we do not recommend doing so.

Assuming one protocol will be the only thing present in the
spectrum is not practical. LTE, Wi-Fi, and soon 5G will all
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Fig. 7. Comparing classification accuracy under AWGN for different ResNet
architectures.

be occupying the same spectrum in certain bands. To explore
the effects of interference, we have superposed signals of
two different protocols over each other at varying Signal to
Interference Ratio (SIR). The phrase signal to interference
ratio is for lack of a better term, because when one protocols
is interference at a very low SIR, then it may as well be the
main signal. In Figure 6 we analyze the outputs of a FNN
that looks at 512 samples at a time. The FNN sees only the
beginning of frames of the two present superposed protocols,
which is a worst case scenario that is rare in practice.

For each data point in Figure 6 a FNN processes 1000
different superposed signals consisting of 2 protocols of a
constant SIR in batches, and the average (avg) and standard
deviation (std) of the values given by the 3 output neurons
are plotted according to the 1000 superposed signals. We
observe very high std of the outputs when the avg of two
outputs are similar. Figure 6 also indicates that when 2 signals
are superposed with similar power, both the std and avg are
about 0.5. This indicates that the NN is consistently outputting
high confidence in one class over the interfering class. This

is actually quite common in NNs utilizing softmax output
layers, because the NN is only ever taught to output one-hot
vectors during training. At first glance, one may think this is
disadvantageous. As described in section V we determine if a
protocol is present by observing a threshold being passed by
an output neuron. The NNs tendency to output high numbers
in one class actually helps to pass the threshold, which is
desirable because we want a device utilizing this algorithm to
determine that both protocols are present in the spectrum.

VII. CONCLUSION

This paper proposes and analyzes a deep learning based
algorithm for identifying if certain protocols are present in
spectrum. Users train a NN to identify the beginning of frames
belonging to certain protocols offline, then when applied in
practice window of baseband IQ samples from an ADC is
passed into the NN. When an output neuron passes a user
defined threshold, this is indication the the protocol associated
with that neuron is present in the spectrum. We showed
that depth does not provide any performance improvement.
Using max pooling in a CNN is a good idea, because it
reduces computational complexity, and converges to 100%
classification accuracy at around the same SNR as NNs that
don’t use max pooling. We showed that reducing window size
does not strongly affect the SNR ranges of good classification
accuracy. When multiple protocols are present in the spectrum
the algorithms is still able to identify which protocols are
present.
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