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ABSTRACT
We address the problem of jamming-resistant broadcast com-
munications under an internal threat model. We propose a
time-delayed broadcast scheme (TDBS), which implements
the broadcast operation as a series of unicast transmissions,
distributed in frequency and time. TDBS does not rely
on commonly shared secrets, or the existence of jamming-
immune control channels for coordinating broadcasts. In-
stead, each node follows a unique pseudo-noise (PN) fre-
quency hopping sequence. Contrary to conventional PN se-
quences designed for multi-access systems, our sequences ex-
hibit high correlation to enable broadcast. Moreover, their
design limits the information leakage due to the exposure
of a subset of sequences by compromised nodes. We map
the problem of constructing such PN sequences to the 1-
factorization problem for complete graphs. Our evaluation
results show that TDBS can maintain broadcast communi-
cations in the presence of inside jammers.

Categories and Subject Descriptors
C.2.0 [Computer - Communication Networks]: Gen-
eral—Security and Protection

General Terms
Security, reliability, algorithms, design

Keywords
Jamming, broadcast communications, denial-of-service, wire-
less networks, graph factorization, security.

1. INTRODUCTION
Wireless communications are vulnerable to intentional in-

terference attacks, typically referred to as jamming. In the
simplest form of jamming, the adversary interferes with the
signal reception by transmitting a continuous jamming wave-
form [24] or several short jamming pulses [18]. Conventional
anti-jamming techniques rely extensively on spread spec-
trum (SS) communications, such as direct sequence spread
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spectrum (DSSS) and frequency hopping spread spectrum
(FHSS) [1, 24]. SS provides bit-level protection by spread-
ing bits according to a secret pseudo-random noise (PN)
code, known only to the communicating parties. In the case
of broadcast communications, the sender’s PN code must be
shared by all (potentially non-trustworthy) receivers. The
disclosure of such a secret due to the compromise of any
receiver nullifies the gains due to SS [16,20].

Several researchers have studied the problem of anti-jam-
ming broadcast communications under an internal threat
model [4, 8, 9, 14, 16, 20, 21, 25, 26]. Methods in [4, 14, 16, 21]
eliminate the dependency of broadcast on shared secrets.
Baird et al. proposed the encoding of “indelible marks” at
specific locations within each broadcasted message [4]. As-
suming that an active jamming attack cannot flip a bit ‘1’to
a bit ‘0’, it was shown that a jammer cannot erase packets
from the wireless channel (but can inject arbitrary packets).
Pöpper et al. [20] proposed a method called Uncoordinated
DSSS (UDSSS), in which broadcast transmissions are spread
according to a PN code, randomly selected from a public
codebook. At the receiving end, nodes decode received mes-
sages by exhaustively applying every PN code in the public
codebook. Liu et. al. proposed RD-DSSS, a randomized dif-
ferential DSSS scheme that also relies on randomly selected
PN codes [16]. Compared to UDSSS, the RD-DSSS scheme
provides resilience to reactive jammers.

Note that when the spreading PN code is not known a pri-
ori, broadcast transmissions must be repeated several times
to synchronize the receiver [20]. Moreover, DSSS exhibits a
threshold behavior to interference. It rejects the interfering
signal as long as the interference remains below the jam-
ming margin, but the throughput becomes practically zero
if this margin is surpassed [19,24]. On the other hand, FHSS
exhibits a graceful degradation in performance with the in-
crease of interference. Due to this dual behavior, DSSS and
FHSS find applications on different domains. The former
is typical in the commercial domain (e.g., [12]) where mod-
erate interference levels are caused by users operating on
the same spectrum, while the latter finds applications in ad-
versarial settings where the interference is likely caused by a
powerful jammer. Because the adversarial model assumed in
this work is of a powerful jammer, we develop anti-jamming
methods that adopt a FHSS design.

Our Contributions: We study the problem of anti-
jamming broadcast communications in the presence of inside
jammers. We propose the Time-Delayed Broadcast Scheme
(TDBS) for anti-jamming broadcast communications, based



on FHSS communications. TDBS differs from classical FHSS
designs in that two communicating nodes do not follow the
same FH sequence, but are assigned unique ones that have
high correlation properties. Unlike the typical broadcast
operation where every receiver is eventually tuned to a com-
mon broadcast channel, TDBS implements the broadcast
operation as a series of unicast transmissions spread both
in frequency and time. To ensure resilience to inside jam-
mers, the locations of the unicast transmissions, defined by
a frequency band/slot pair, are only partially known to any
subset of receivers. Because the jammer can only interfere
with a limited set of frequency bands per time slot, a sub-
set of the unicast transmissions are interference-free, thus
propagating broadcast messages.

The problem of FH sequence design, is mapped to a 1-
factorization problem in complete graphs. While a broad
class of scheduling algorithms are known to employ 1-factors
(perfect matchings) (e.g., [7,11,22,23,27]), they are, in gen-
eral, concerned with unicast communications in a benign
setting. They also typically require coordination via the ex-
change of broadcast messages [7, 11]). TDBS is specifically
designed to facilitate broadcasting in the presence of jam-
mers and in the absence of a coordination channel.

Note that TDBS is not meant to be a permanent replace-
ment of the conventional broadcast mechanism in a benign
setting. Broadcasting on a common frequency band achieves
the optimal communication efficiency (one slot) in the ab-
sence of any jammer. TDBS is designed as an emergency
mechanism for temporarily restoring communications until
the jammer is physically removed from the network. There-
fore, its primary focus is resilience to inside jammers.

Paper Organization: The remainder of the paper is
organized as follows. In Section 2, we state the system and
adversarial model assumptions. In Section 3 we present an
overview of TDBS. Section 4 describes TDBS for single-hop
networks. In Section 5, we extend the TDBS operation to
multi-hop networks. The security and performance of TDBS
are evaluated in Section 6. In Section 7, we present related
work, and in Section 8, we conclude the paper.

2. SYSTEM AND ADVERSARIAL MODELS
Network Topologies: We consider two types of network
topologies. In the topology of figure 1(a), a set of nodes
form a single-hop broadcast group. Any node may initiate
a broadcast transmission to its neighbors. This single-hop
topology is typical in wireless LAN and wireless personal
area networks, where a group of devices is assumed to be in
close range (e.g., bluetooth devices), and in military scenar-
ios where a set of mobile nodes move in a team-coordinated
fashion. In figure 1(b), we consider a multi-hop network con-
nected in ad hoc mode. To make TDBS scalable with the
network size, we assume that the network is partitioned to
clusters which form cliques [13,28]. Broadcast transmissions
occurring under this architecture may be limited within a
cluster, or may propagate to other clusters.

System Model: Nodes communicate over a set C = {f1,
. . . , fK} of K distinct frequency bands (e.g., K = 79 for the
bluetooth standard). Each node is equipped with a single
half-duplex transceiver. Hence, a node can only listen to
or transmit over one band at a time. We assume that all
nodes are synchronized to a time-slotted system. Nodes are
capable of hopping between frequency bands. Without loss

jammer jammer

(a) (b)

Figure 1: (a) A WPAN architecture in which devices
located within one-hop form a broadcast communi-
cation group, (b) a multi-hop architecture in which
communicating nodes span several hops.

of generality, we assume that frequency hopping occurs on a
per-slot basis. For simplicity, the duration of one time slot is
assumed sufficient for the transmission of one message unit.

The network is initialized by a trusted authority, which is
responsible for pre-loading relevant parameters such as PN
FH sequences and other cryptographic secrets. For multi-
hop topologies, we assume a static network topology, known
to the trusted authority. Broadcast communications can
be either public (transmitted in an unencrypted form) or
private. In the latter case, confidentiality and authenticity of
the communication is achieved via resource-efficient public
key operations. Once the network is initialized, the trusted
authority is no longer needed.

Adversary Model: The goal of the adversary is to pre-
vent the sender(s) from communicating with all, or a subset
of the intended receivers. For this purpose, the adversary
deploys a set of jamming devices at locations of his own
choosing, which can be centrally coordinated. These devices
are capable of collectively jamming any J frequency bands
of the adversary’s choosing, by adding interfering signals to
the selected frequencies. Wireless transmissions over any of
the jammed frequency bands are assumed to be “irrecover-
ably” corrupted. We do not impose any particular power
constraint on the adversary, but assume that the jammed
frequency bands become unavailable in the entire network
(single-hop, or multi-hop). The jamming devices can switch
between frequency bands on a per-slot basis.

The adversary is capable of physically compromising net-
work devices and recovering stored information including
cryptographic keys, PN codes, certificates, etc. Moreover,
the adversary is aware of the methods used to protect broad-
cast transmissions (in our case the specifics of the PHY layer
implementation and the TDBS algorithm). Note that simi-
lar adversary models have been considered in [14–16,20].

3. OVERVIEW OF TDBS
To achieve jamming-resistant communications in the pres-

ence of insiders, TDBS realizes broadcast as a series of uni-
cast transmissions distributed in frequency and time, thus
avoiding the convergence of all nodes to a common frequency
band. The locations of the unicast transmissions, defined by
a frequency band/slot pair (f, s), are only partially known to
each node (every node is aware of his own schedule). There-
fore, the compromise of a node reveals only the set of loca-
tions assigned to that node, while keeping the locations of
other communicating nodes secret.

For this purpose, nodes are divided into pairs scheduled
to communicate over frequency bands which are selected
at random. It is possible to partition the set of nodes to
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Figure 2: (a) Operation in the SU mode. Broadcast is realized as a series of unicasts. The pair (f, s) denotes
the frequency band and time slot where the unicast takes place, (b) the timeline of the unicast transmissions
of n1 for the SU mode. The “x”marks denote frequencies jammed by the adversary, (c) operation in the AB
mode. A broadcast transmission is relayed by several nodes at separate frequency bands, (d) the timeline of
the unicast transmissions for the AB mode.

groups of size larger than two for more efficient broadcast
communication at the expense of reduced resilience to node
compromise. Because we are primarily concerned with the
jamming-resistance property, we consider the case of node
pairs. The communicating pairs and assigned frequency
bands change on a per-slot basis thus realizing a FH sys-
tem. TDBS differs from traditional FH designs in that: (a)
communicating nodes do not synchronize to the same FH
sequence, but follow unique hopping patterns and, (b) these
patterns have a high correlation to lower the number of slots
required to complete a broadcast transmission. Moreover,
TDBS differs from rendezvous systems that have been pro-
posed for coordinating multi-channel access (e.g. [3, 5]), in
that it focuses on the broadcast operation as opposed to
rendezvous for unicast communications.

Two modes of operation are proposed for TDBS: the se-
quential unicast mode (SU) and the assisted broadcast mode
(AB). In the SU mode, the sender sequentially relays infor-
mation to intended receivers. This more inefficient mode is
appropriate when receivers do not have relaying capabilities,
or are not trusted to relay the broadcast message. In the AB
mode, any node that receives a broadcast message can act
as a relay for that message.

Figure 2 shows an example of the two modes. In figure
2(a), node n1 operates in the SU mode. It sequentially uni-
casts a broadcast message to nodes n2 − n6. Figure 2(b),
depicts the timeline of transmissions of figure 2(a). The
broadcast is completed after five slots. The “x” marks de-
note the frequency band jammed by the adversary at each
time slot. Figure 2(c), shows the operation in the AB mode.
Node n1 initiates a broadcast in slot 1, by transmitting a
message m to n2. In slot 2, n1 and n2 relay m to n6 and n3,
respectively, using frequency bands f1 and f3 in parallel. In
slot 3, the broadcast is completed with the relay of m from
n1, n3 and n6 to n5, n4 and n2, respectively. The timeline of
the transmissions taking place in the AB mode is shown in
figure 2(d). Observe that in this scenario the broadcast is
completed despite the jamming of the transmission between
n6 and n2 in slot 3.

The main challenge of TDBS is to design the FH sequences
of individual nodes such that the following requirements are
met: (a) hopping sequences are pseudo-random, (b) compro-
mise of a subset of nodes (insiders) limits the information
leakage relevant to the sequences of uncompromised nodes,
and (c) every node has the same opportunity to perform
a broadcast (fairness). In the next section, we develop al-
gorithms for constructing hopping sequences for TDBS-SU
and TDBS-AB that satisfy the above requirements. We first

illustrate our algorithms for single-hop topologies and then
extend our results to multi-hop topologies.

4. TDBS FOR SINGLE-HOP TOPOLOGIES
To achieve resilience to jamming, we randomly distribute

unicast transmissions both in frequency and in time. This
problem can be viewed as a link scheduling problem for
avoiding collisions in multi-channel networks, under the node-
exclusive interference model. A large body of literature
treats this type of scheduling as various instances of a match-
ing problem in general graphs [7, 11, 22, 23, 27]. However,
pre-existing methods are not immediately applicable to our
setup for the following reasons.

In link scheduling problems, the goal is to maximize the
aggregate network throughput, realized as the sum of in-
dividual traffic flows. We are concerned with the dissem-
ination of one message to a specified set of receivers (the
members of a broadcast group) over unpredictable frequency
band/slot locations, and in the presence of adversaries. This
desired property is not necessarily satisfied by maximum
throughput designs, which optimally schedule link trans-
missions in the entire network (centralized approaches) [27].
Moreover, decentralized solutions implementing distributed
matching algorithms require the local exchange of coordi-
nation messages between nodes, over a commonly agreed
channel [7, 11]. Clearly, such a channel cannot be available
in our setup due to the presence of an inside jammer.

To ensure the broadcast property, we map the problem
of constructing FH sequences to the problem of producing
1-factorizations in complete graphs. 1-factorizations realize
a series of perfect matchings (1-factors), which span the all
edges of a complete graph [30]. Hence, a broadcast from
any node will be communicated to all other nodes. We first
present relevant preliminaries from graph theory. Interested
readers are referred to [17,30] for an in-depth treatise of the
problem of 1-factorization.

4.1 Definitions and Useful Theorems
Consider a graph G(V, E), where V denotes the vertex set

and E denotes the edge set. Assume that |V| = 2n where n is
a positive integer (a dummy node can be added otherwise).

Definition 1. Complete graph: G(V, E) is said to be
complete if each pair of vertices is connected by an edge. We
denote such a graph by K2n, where |V| = 2n.

Definition 2. 1-factor: A 1-factor or a perfect match-
ing F of a graph G is a subset of E that partitions V, i.e., F
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is rotated by i positions to the left. Node 1 remains fixed, (b) mapping of a 1-factor to unicast transmissions.
Paired nodes concurrently communicate on separate frequency bands, (c) construction of hopping sequences
for sequential unicast based on 1-factorization for a group of four nodes.

is a set of pairwise disjoint edges of G that covers all vertices
of V.

Definition 3. 1-factorization: A 1-factorization F2n =
{F0, F1, . . . , F2n−2} of a graph G is a partition of its edge set
E to (2n− 1) 1-factors.

Theorem 1. 1-factorization of K2n: A complete graph
K2n is 1-factorable [30].

Construction of 1-factorizations of K2n: 1-factoriza-
tions of K2n can be systematically constructed using well-
known algorithms (e.g., [10,17,29,30]). These methods typ-
ically rely on the selection of a “starter” 1-factor, based on
which the entire 1-factorization can be derived. A simple
method for constructing a 1-factorization of K2n is to se-
lect a starter 1-factor and apply a shift-and-rotate opera-
tion to it [30]. This method is illustrated in figure 3(a). A
1-factorization is initialized by the 1-factor F0. Node 1 re-
mains fixed. To obtain the 1-factor Fi, nodes in the perime-
ter are rotated clockwise by i steps.

4.2 Mapping to the 1-factorization Problem
In this section, we map the problem of constructing hop-

ping sequences for TDBS into the problem of generating
1-factorizations of complete graphs. In our mapping, the
vertex set V of K2n represents the node set N of the single-
hop network, and an edge (x, y) ∈ E represents a unicast
transmission between nodes x and y. A 1-factor corresponds
to partitioning of the 2n nodes into n communicating pairs.
These pairs are scheduled to communicate in parallel over
separate frequency bands. A 1-factorization F2n partitions
the set of edges E into (2n − 1) disjoint 1-factors, where
each edge appears exactly once. In a schedule constructed
according to F2n, every node has the opportunity to com-
municate with all remaining (2n− 1) nodes, thus achieving
the sequential relay of a broadcast message.

An example of the mapping to the 1-factorization problem
is shown in figure 3(b). A group of eight nodes is partitioned
into four pairs, which are scheduled to communicate over
four frequency bands. According to the 1-factor Fi, the com-
municating pairs during slot i are {(1, 3), (2, 5), (4, 6), (7, 8)},
communicating over frequency bands f3, f2, f8 and f5, re-
spectively. Figure 3(c) shows a feasible set of hopping se-
quences hj for four nodes, j = 1, . . . , 4, based on the 1-
factorization of K4. Communication of all pairs of nodes is
completed in three slots. We now present algorithms for
constructing FH sequences.

Algorithm 1 TDBS-SU: Sequential Unicast Mode

1: Generate F2n of K2n

2: repeat
3: for i = 0 to (2n− 2) do
4: for j = 1 to ⌈ n

K
⌉ do

5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hF ((j−1)K+w,1) = hF ((j−1)K+w,2) = π(w)
8: end for
9: end for
10: end for
11: end repeat

4.3 TDBS-SU: Sequential Unicast Mode
In the SU mode, a sender sequentially unicasts the broad-

cast message to (2n − 1) intended receivers. The hopping
sequences are constructed as follows.

Step 1: Construct a 1-factorization F2n of K2n, where
F2n = {F0, F1, . . . , F2n−2}.
Step 2: For all Fi ∈ F2n, 0 ≤ i ≤ 2n− 2, repeat Steps 3–5.
Step 3: Obtain a random permutation π of the set of fre-
quency bands C.
Step 4: Assign frequency bands in π to min{n,K} edges of
Fi in the order of occurrence of the edges.
Step 5: Repeat Steps 3 and 4 until all pairs in Fi are as-
signed a frequency band.
Step 6: Repeat Steps 1-5.

The pseudo-code of the hopping sequence construction
for the SU mode is shown in Algorithm 1. In figure 3(c),
we show an example of the application of Algorithm 1 to
a group of four nodes. The set of available channels is
C = {f1, . . . , f5}, (K = 5). Because K ≥ n, the n pairs
corresponding to a 1-factor can communicate in parallel in
one slot. In slot 0, pairs communicate according to factor
F0. The random permutation of C is π = {f2, f3, f5, f1, f4}.
Pair (1, 2) is assigned band π(1) = f2 and pair (3, 4) is as-
signed band π(2) = f3. The process is repeated for factors
F1, and F2. Note that condition K ≥ n is not necessary for
the correct operation of our algorithm. When the number of
frequency bands is smaller than the pairs of communicating
nodes, transmissions corresponding to one factor are split in
multiple slots, as shown in Steps 3-5. However, for single
hop networks, it is expected that K >> n. We now show
that Algorithm 1 constructs random FH sequences.
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Proposition 1. The FH sequences constructed by Algo-
rithm 1 are random.

Proof. Let hj = {X1, X2, . . .} denote a FH sequence
constructed by Algorithm 1 for a node j, where Xi is a ran-
dom variable denoting the frequency band used at slot i.
Random variables Xi form an i.i.d. with each variable be-
ing randomly distributed (frequency bands at Step 4 are ran-
domly and independently selected). Hence, h is random.

4.4 TDBS-AB: Assisted Broadcast Mode

Algorithm 2 TDBS-AB: Assisted Broadcast Mode

1: Generate random F0 of K2n

2: initialize i = 0
3: repeat
4: for j = 1 to ⌈ n

K
⌉ do

5: π = rand(perm(C))
6: for w = 1 to min{n,K} do
7: hFi((j−1)K+w,1) = hFi((j−1)K+w,2) = π(w)
8: end for
9: end for
10: Fi+1 = split(Fi)
11: i++
12: end repeat

In the AB mode, any node that has already received a
broadcast message operates as a broadcast relay. To con-
struct hopping sequences for the AB mode, the 1-factors
Fi are selected and arranged in such a way that the num-
ber of nodes that can relay a broadcast transmission in each
1-factor is maximized. This property minimizes the delay
until the broadcast is completed, while increasing resilience
to jamming. We first define the notion of the relay set.

Definition 4. The Relay Set Ri
j of node j in a 1-

factor Fi is defined as the set of nodes that can relay a trans-
mission that originated from j.

The main idea of our hopping sequence construction al-
gorithm is to maximize the size of the relay set Ri

j , for ev-
ery node j and in every 1-factor Fi. Note that in the AB
mode, it is not necessary that the series of 1-factors form
a 1-factorization (i.e., that all pairs of nodes communicate
directly), because nodes can receive the broadcast transmis-
sion via multiple hops. The hopping sequences assigned to
each node are constructed as follows.

Algorithm 3 Splitting Algorithm split

1: Fi+1(1, 1) = Fi(1, 1)
2: if n even then
3: Fi+1(1, 2) = Fi(

n
2
+ 1, 2)

4: else
5: Fi+1(1, 2) = Fi(⌈

n
2
⌉, 2)

6: end if
7: for j = 2 to n do
8: Fi+1(j, 1) = Fi(⌈

j

2
⌉, 2), if j even

9: Fi+1(j, 1) = Fi(⌈
j

2
⌉, 1), if j odd

10: if n even then
11: Fi+1(j, 2) = Fi(⌈

n+j

2
⌉, 1), if j even

12: Fi+1(j, 2) = Fi(⌈(
n+j

2
⌉, 2), if j odd

13: else
14: Fi+1(j, 2) = Fi(⌈

n+j

2
⌉, 2), if j even

15: Fi+1(j, 2) = Fi(⌈(
n+j

2
⌉, 1), if j odd

16: end if
17: end for

Step 1: Obtain an arbitrary 1-factor F0 of K2n. Set i = 0.
Step 2: Obtain a random permutation π of the set of fre-
quency bands C.
Step 3: Assign frequency bands in π to min{n,K} edges of
Fi in the order of occurrence of the edges.
Step 4: Repeat Steps 2 and 3 until all pairs in Fi are as-
signed a frequency band.
Step 5: Construct 1-factor Fi+1 according to the splitting
algorithm. Set i = i+ 1.
Step 6: Repeat Steps 2 and 5.

The pseudo-code of TDBS-AB is shown in Algorithm 2.
The pseudo-code of the splitting algorithm employed to gen-
erate Fi+1 from Fi is shown in Algorithm 3, and illustrated
in figure 4(a). Every pair of nodes that communicate accord-
ing to the 1-factor Fi are placed in adjacent rows in the 1-
factor Fi+1. The propagation of this property in subsequent
1-factors minimizes the broadcast delay by maximizing the
size of the relay set Ri

j for any j and for every 1-factor.
To illustrate the application of Algorithm 2, consider a

network of eight nodes. The first four 1-factors that are
generated by our algorithm and the corresponding hopping
sequences assigned to various nodes are shown in figure 4(b).
Node 1 initiates a broadcast transmission of message m fol-
lowing the 1-factor F0. The circles mark the nodes that re-
ceive message m after the completion of the unicasts corre-



sponding to various 1-factors. In fact, one can verify from
the 1-factors shown in Fig. 4(b) that any broadcast trans-
mission initiated under 1-factor F0 is completed by 1-factor
Flog2(8)−1 = F2. In section 6, we prove that this property
holds for any broadcast initiated at any time slot. Note that
TDBS-AB uses the same mechanism as TDBS-SU (Steps 2-
4) for assigning frequency bands to communicating pairs.
Therefore, Proposition 1 holds for the hopping sequences
generated by TDBS-AB. These sequences are uniformly dis-
tributed over the set of available channels, thus minimizing
the success of an external jammer in guessing the frequency
bands of future communications based on past observations.
Moreover, compromise of sequences limits the information
leakage regarding other sequences.

5. TDBS IN MULTI-HOP NETWORKS
In this section, we extend the operation of TDBS to multi-

hop networks. In this scenario, the FH sequence design
can be viewed as a global scheduling problem. While sev-
eral distributed methods have been proposed for distributed
scheduling (e.g., [7,11]), we note that these methods require
coordination via a commonly accessible channel. However,
such a channel can be blocked by an inside jammer. We,
therefore, develop a scalable solution based on clustering,
that does not require node coordination.

We partition the network into clusters where each cluster
forms a clique [13,28]. Clique clustering produces a network
partition where every node belongs to a single cluster and
the members of each cluster are within one hop. We then di-
vide the broadcast operation into two phases: (a) the intra-
cluster phase, and (b) the inter-cluster phase. During the
intra-cluster phase, communication is limited within each
cluster. In the inter-cluster phase, messages are exchanged
between border nodes of adjacent clusters. The two phases
are interleaved in time.

5.1 Intra-cluster Phase
In the intra-cluster phase, a broadcast message propagates

to all nodes within a cluster. Because the nodes of a cluster
form a clique, the SU or AB operation modes for single-
hop networks are employed. To avoid interference between
adjacent clusters, the set of available frequency bands C is
divided into four mutually exclusive sets which are assigned
to each cluster according to the four color theorem [2].

One such assignment is shown in figure 5(a). The shading
pattern of each cluster denotes a separate set of frequency
bands. In this example, 10 frequency bands are assigned to
each cluster, yielding a K = 40. Note that the number of
available frequency bandsK is expected to be be much larger
than the number of nodes within the same collision domain
(i.e., cluster size). In any case, the algorithms outlined in
Sections 4.3 and 4.4, produce FH sequences for any relation
between K and n. The steps for deriving FH sequences for
the intra-cluster phase are as follows.

Step 1: Color each cluster based on the four-color theorem.
Step 2: For each distinct cluster size 2n, construct a 1-
factorization F2n of K2n.
Step 3: For each cluster, pick the 1-factorization corre-
sponding to its cluster size and construct FH sequences for
the cluster nodes following the SU mode or the AB mode.
Step 4: Repeat Steps 2 and 3 until all clusters are pro-
cessed.

In Step 2, it is sufficient to produce distinct 1-factorizations
for every possible cluster size. Two clusters of the same size
can use the same 1-factorization, dictating the rendezvous
of its cluster members, respectively. However, due to the
random permutation assignment of frequency bands in Step
3, the pairs of nodes of each cluster will communicate at
different frequency bands, thus ensuring the randomness of
the pairwise communication among pairs.

5.2 Inter-cluster Phase
In the inter-cluster phase, border nodes in adjacent clus-

ters relay broadcast messages that are intended to propagate
beyond the boundaries of each cluster. To do so, while avoid-
ing collisions between adjacent transmissions, we exploit the
cluster labeling produced by the application of the four-color
theorem. During this phase, every time-slot is marked with
one of the four colors indicating the set of clusters that are
allowed to transmit on that slot. As an example, in figure 5,
clusters A and D are allowed to transmit on slot 0, clusters
C and F on slot 1, clusters B and E on slot 2 and cluster
G on slot 3, with this sequence repeating modulo four (slot
numbers indicate assignment before the interleaving with
the intra-cluster phase) . After the slot coloring, the FH
sequences of individual nodes are generated as follows.

Step 1: For each cluster x, find the nodes in x bordering
adjacent clusters. Place this nodes to a set A.
Step 2: For each node i ∈ A, find the neighbors of i in
adjacent clusters. If a neighbor is common to two nodes in
x, assign it to the node with the fewer neighbors. Break ties
arbitrarily (e.g., considering the node with the lowest id).
Merge nodes assigned to the same i to a single vertex and
place vertices to set B. Create a bipartite graph G(A∪B,E),
where an edge (x,y) exists if nodes corresponding to y are
assigned to x. G forms a 1-factor Fx.
Step 3: For each slot colored with x’s color, obtain a ran-
dom permutation π of the set of frequency bands C.
Step 4: Assign frequency bands in π to min{n,K} edges of
Fx in the order of occurrence of the edges.
Step 5: Repeat Steps 3 and 4 until all pairs in Fx are
assigned a frequency band.
Step 6: Repeat Steps 1-5, until all clusters are processed.

The inter-cluster phase is illustrated in Figure 5(b). Ac-
cording to their color, clusters A and D are scheduled to
broadcast during slot 0. Nodes 2,3, and 4 belong to set
A of cluster A since they can communicate with nodes of
adjacent clusters. For slot 0, the communicating pairs are
{2 − 9, 10} {3 − 11, 12} and {4 − 7, 8}, and are assigned
frequency bands f11, f22, and f2, respectively. Similarly, for
cluster D and slot 0, the communicating pairs are {5−6, 13}
{14− 15} and {16− 17}, and are assigned frequency bands
f8, f33, and f25, respectively. Note that during the inter-
cluster phase, all channels in C are available for assignment
to the communications of adjacent pairs of nodes.

The intra-cluster and inter-cluster slots are interleaved in
the FH design, to allow for both single hop and multi-hop
broadcast transmissions are achieved.

6. PERFORMANCE AND SECURITY EVAL-
UATION

In this section, we evaluate the performance of TDBS and
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Figure 5: (a) The intra-cluster phase, (b) the inter-cluster phase.

analyze its security properties. As a performance/security
metric, we use the broadcast delay, defined as follows.

Definition 5. The Broadcast Delay D is the number
of slots required for the completion of a broadcast operation,
i.e., until all intended recipients have received a copy of the
broadcasted message.

6.1 Performance in the Absence of Jammers
In this section, we evaluate the broadcast delay for the

two TDBS modes in the absence of jammers. This analysis
is provided to facilitate the evaluation of the broadcast delay
when jammers are assumed to be present.

Proposition 2. The broadcast delay of TDBS-SU is D =
⌈ n
K
⌉(2n− 1) slots.

Proof. The proof is provided in Appendix A.

Next, we evaluate the broadcast delay in the AB mode.

Proposition 3. The broadcast delay for TDBS-AB is D =
⌈ n
K
⌉⌈log2(2n)⌉ slots.

Proof. The proof is provided in Appendix B.

6.2 Security Analysis
We first analyze the resilience of TDBS to external and

internal jammers for single-hop networks.

6.2.1 Resilience to External Jammers
Under an external threat model, the hopping sequences

assigned to various nodes remain secret. For this scenario,
we assume that the adversary deploys multiple jamming de-
vices that can jam up to J frequency bands per time slot,
with J < K. For convenience, we assume K ≥ n so that all
node pairs corresponding to a 1-factor can communicate in
parallel in one time-slot. This is typical in wideband commu-
nications where K is much larger than the expected number
of nodes within the same collision domain. Our results can
be extended to the K < n case in a straightforward manner.
Suppose that a jammer attempts to jam the broadcast of a
single node j. To compute D, we evaluate the average num-
ber of 1-factorizations needed to complete the broadcast, in
the presence of the external jammer, and for each mode.

Proposition 4. In the presence of an external jammer,
the expected number E[Z] of 1-factorizations needed to com-
plete a broadcast operation in the SU mode is

E[Z] = (1− p)2n−1 +

∞
∑

i=2

i(1− pi−1)2n−1 ×

2n−1
∑

k=1

(

2n− 1

k

)

(

pi−1(1− p)

1− pi−1

)k

, (1)

where p = J
K

denotes the jamming probability.

Proof. The proof is provided in Appendix C.

In figure 6(a), we compare the theoretical value of E[Z]
with the simulated one. For our simulations, we generated
sequences of size 1, 000 hops for different values of n and
K according to Algorithm 1. We also randomly selected
J channels to be jammed per time-slot. All results were
averaged over 100 runs. We measured E[Z] as a function
of the jamming probability p = J

K
. We observe that the

simulation values agree with the theoretical ones.
Based on Proposition 4, the expected broadcast delay

E[D] is equal to the expected number of 1-factorizations
needed for the completion of a broadcast, times the number
of slots needed for the completion of each 1-factorization.
The first (E[Z] − 1) 1-factorizations require (2n − 1) slots,
while the last 1-factorization requires, on average, 2n−1

2
slots

(the last successful transmission takes place on any of the
1-factors of the last 1-factorization with equal probability).
Therefore, E[D] = (2n− 1)

(

E[Z]− 1
2

)

.
Figure 6(b), shows the theoretical and simulated value of

E[D] as a function of the jamming probability p. We ob-
serve that even when the adversary jams 80% of the avail-
able channels, nodes are still capable of completing their
broadcast transmissions at the expense of some delay. Nev-
ertheless, the broadcast communication is maintained. In
figure 6(c), we show E[D] as a function of the number of
available channels K for various values of J. E[D] decreases
with K, approaching the asymptotic value of K, obtained in
the absence of a jammer, i.e., E[D] = 2n− 1.

For the AB mode, E[D] does not have a simple closed-
form expression but involves complex summation formulas.
However, we can derive a useful formula for J = 1.

Proposition 5. After the first successful relay of a broad-
cast message m, the broadcast delay until m is received by
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(2n− 2) nodes (all nodes, but one) is bounded by

⌈log2(2n)⌉ − 1 ≤ D ≤ ⌈log2(2n)⌉. (2)

Proof. The proof is provided in Appendix D.

Proposition 5 allows us to estimate the expected broad-
cast delay for the AB mode. Let D1 denote the expected
delay until the first success, D2 the delay until (2n−2) nodes
receive message m and D3 the delay until the last node re-
ceives m. The expected broadcast delay is bounded by

E[D] = E[D1 +D2 +D3]

≤
K

K − 1
+ ⌈log2(2n)⌉ +

K

K − 1
. (3)

In (3), we have used the fact that it takes, on average, K
K−1

slots for the first successful relay when p = 1
K
. Moreover, af-

ter the first success, ⌈log2(2n)⌉ slots are needed in the worst
case until 2n− 2 nodes receive m. The last node receives m
after K

K−1
slots, on average.

We also studied the performance of the AB mode via sim-
ulations. For our simulations, we generated sequences of
size 1, 000 hops for different values of n and K according to
Algorithm 2. We also randomly selected J channels to be
jammed per time-slot. All results were averaged over 100
runs. Figure 7(a) shows E[D] as a function of K for J = 1.
We observe that the theoretical value derived using Proposi-
tion 5 agrees with the simulation. In figure 7(b), we show the
average and worst-case broadcast delay, as a function of p.
We observe that even when p = 0.83, the average and worst-
case delays differ by less than six slots. This is due to the
“relay explosion” effect of the splitting algorithm. The AB

mode is significantly more resilient to jamming than the SU
mode, due to the larger number of broadcast relays. Even
when 83% of the frequency bands are jammed, the AB mode
requires only 38 slots to complete a broadcast, compared to
228 slots needed with the SU mode. In figure 7(c), we show
E[D] as a function K for different values of J . We observe
that with the increase of K, E[D] asymptotically approaches
the performance of the AB mode in the absence of jammers.

6.2.2 Resilience to Internal Jammers
Assume now that the adversary has compromised r nodes

and recovered their FH sequences. We are interested in de-
termining the broadcast delay until the remaining (2n−r−2)
legitimate nodes receive a broadcast message m. Knowledge
of the r FH sequences reduces the adversary’s uncertainty
with respect to the frequency locations of legitimate uni-
casts. This is because the space of C for the selection of
the uncompromised FH sequences is reduced. The exact
value of E[D] depends on the selection of the 1-factorization
that is used to construct the hopping sequences and the
specific arrangement of the compromised nodes on that 1-
factorization. The jamming probability p varies on a slot-
by-slot basis and is given in the following proposition.

Proposition 6. Under the compromise of r nodes, the
jamming probability p is bounded by

min{1,
J

K − ⌈ r
2
⌉
} ≤ p ≤ min{1,

J

K − r
}. (4)

Proof. The proof is provided in Appendix E.

We further used simulation to investigate the impact of
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Figure 8: (a), (b) E[D] as a function of the number of compromised nodes for various values of K, when J = 3,
(c), (d) E[D] as a function of the number of compromised nodes for various values of J, when K = 10.

node compromise on the broadcast delay. For our simula-
tions, we generated FH sequences of length 1, 000 hops for
different values of n and K. We randomly selected r of these
sequences to be exposed to the adversary. At each time slot,
the adversary randomly jammed J bands, excluding the ex-
posed ones. A broadcast was deemed successful, when all
legitimate nodes obtain a message copy. All results were av-
eraged over 100 runs. Figures 8(a) and 8(b) show E[D] as a
function of the number of compromised nodes when J = 3
and K = 10, 12, 20, for the SU and AB modes, respectively.
We observe that legitimate nodes complete their broadcast
transmissions even when more than 50% of the nodes are
compromised. The AB mode exhibits significantly lower de-
lay compared to the SU mode, due to the use of multiple
relays. Note that when K is small and several nodes are
compromised, the jammers have a high chance of jamming
legitimate pairs. This fact can be seen from the sharp in-
crease of E[D] when K = 10.

In figure 8(c) and 8(d), we show E[D] as a function of the
number of compromised nodes when K = 10 and for vari-
ous values of J , under the SU and AB modes, respectively.
Even with the increase of J , legitimate nodes are able to
complete their broadcast transmissions in both modes, with
the AB mode being the most efficient. Note that E[D] de-
creases when a large number of nodes is compromised, since
fewer legitimate nodes need to receive a unicast message for
completing a broadcast transmission.

6.3 Evaluation of Multi-hop Scenarios
In this section, we evaluate TDBS for multi-hop networks.

We focus on the jamming-resistance of the inter-cluster phase,
since for the intra-cluster phase, the security analysis for
single-hop networks holds. We define the following perfor-
mance metrics for the inter-cluster phase:

- Flooding Delay Df : the number of slots needed until all
clusters adjacent to a cluster i, have received a broad-
cast that originated in i, directly from a node in i.

- Escape Delay De: the number of slots needed until a
broadcast message m originating at a cluster i, reaches
any node in any adjacent cluster.

Escape diversity DIV : the fraction of adjacent clusters
that receive a broadcast m directly from a cluster i,
when some border nodes in i are compromised.

We first analytically evaluate the average flooding delay
E[Df ] in the presence of external jammers. Assume a cluster
with NC adjacent clusters. Let NL denote the number of
“bridge links” between two adjacent clusters.

Proposition 7. In the presence of an external jammer,

E[Df ] is equal to

E[Df ] = (1− p̃)NC +
∞
∑

i=2

i(1− p̃i−1)NC ×

NC
∑

k=1

(

NC

k

)

(

p̃i−1(1− p̃)

1− p̃i−1

)k

, (5)

where p̃ =
(

J
K

)NL denotes the probability that all NL links
to an adjacent cluster are jammed at a particular slot

Proof. The proof of Proposition 7 follows the same steps
as the proof of Proposition 4, by substituting p = J

K
with

p̃ =
(

J
K

)NL . Due to space limitations we refer to the proof
provided in Appendix C.

We also verified Proposition 7 via simulations. In our
setup, we generated a multi-hop topology consisting of 50
nodes, organized in clusters. We then generated FH sched-
ules for all nodes in the network for the inter-cluster phase,
according to the algorithm described in Section 5.2. At each
time slot, the jammer was assumed able to block J random
frequency bands across the entire network. Results were av-
eraged over all clusters in the network. Figure 9(a) shows
E[Df ] as a function of the jamming probability p. We denote
the number of “bridge links” between two adjacent clusters
to be NL. We observe that, even when 80% of the available
frequency bands are jammed, only 13 inter-cluster slots are
needed until all neighboring clusters directly receive a broad-
cast. Once the message propagates to adjacent clusters, the
intra-cluster phase follows. We also evaluate the expected
escape delay E[De] under the compromise of r border nodes.

Proposition 8. Under the compromise of r border nodes
of a cluster i, E[De] is given by

E[De] =
1

1−

(

PNL
c +

∑NL

i=1

(

NL

i

)

(

J(1−Pc)
K−r

)i
)NC

, (6)

where Pc = r
NC×NL

denotes the compromise probability.

Proof. The proof is provided in Appendix F.

The expected escape diversity E[DIV ] is evaluated in the
following proposition.

Proposition 9. Under the compromise of r nodes, E[DIV ]
is given by

E[DIV ] = 1− PNL

c . (7)

Proof. The proof is provided in Appendix G.
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Figure 9: (a) E[Df ] as a function of the jamming probability p, (b) E[De] as a function of the number of
compromised nodes r for various J, (c) E[DIV ] as a function of r for various NL.

Figures 9(b) and 9(c) evaluate E[De] and E[DIV ] as a
function of the number of compromised border nodes. In
our simulation, compromised border nodes do not relay mes-
sages and their FH sequences are assumed exposed. From
figure 9(b), we observe that a small number of slots is suffi-
cient for the first copy of a broadcast message to reach one
adjacent cluster. From figure 9(c), we observe that more
than 90% of neighboring clusters are guaranteed to receive
the message when NL = 3, while this value being reduced
to 50% when NL = 2.

7. RELATED WORK
The problem of jamming in wireless communications has

been extensively studied under an external threat model (for
example, see [1,24] and the references therein). Jamming is
typically mitigated by spreading the transmitted signal to
a larger bandwidth following a secret PN code. Without
knowledge of this code, the jammer has to expend several
orders of magnitude more energy (typically 20-30 dB gain)
to interfere with ongoing transmissions. However, in the
case of broadcast communications, compromise of commonly
shared PN codes suppresses the advantages of SS.

Recently, several researchers have considered the prob-
lem of jamming under an inside threat model. Chan et al.
showed that a jammer that targets the broadcast control
channel in GSM networks can reduce the required power
for performing a DoS attack by several orders of magni-
tude [6]. Desmedt et al. proposed an anti-jamming scheme
that protects broadcast communications from a small num-
ber of inside and colluding jammers [9]. Their method re-
lies on combinatorial block designs to allow for partial shar-
ing of secret information with respect to the location of the
broadcast frequency bands. To protect control-channel traf-
fic, the replication of broadcast transmissions over multi-
ple channels whose location are cryptographically protected,
was suggested in [6,25,26].

Alternative methods eliminate the dependence on shared
secrets [4, 14, 16, 20]. Baird et al. proposed a keyless anti-
jamming technique based on encoding of indelible marks
at specific locations within each broadcasted message [4].
Pöpper et al. proposed a solution called Uncoordinated
DSSS (UDSSS) [20]. In UDSSS, broadcast transmissions
are spread according to a PN code, randomly selected from
a public set of codes. Liu et. al. proposed RD-DSSS, a ran-
domized differential DSSS scheme also relying on randomly
selected PN codes [16]. Compared to UDSSS, the RD-DSSS
scheme provides resilience to reactive jammers.

Several methods attempt to identify the compromised nodes
that leaked information to the jammer. Lazos et al. pro-
posed the assignment of unique frequency hopping sequences
to each receiver, overlapping in a fixed subset of hops [14].
Using the uniqueness of the assigned sequences, compro-
mised nodes whose sequences are used for jamming are iden-
tified. Tague et al. proposed the GUIDE scheme for identi-
fying compromised nodes based on the set of control chan-
nels that are jammed. They formulated the identification
problem as a maximum likelihood estimation problem [26].
Chiang and Yih-Chun Hu, developed a code-tree based ap-
proach for identifying compromised PN codes [8].

8. CONCLUSION
We proposed TDBS, a scheme for jamming-resistant broad-

cast communications in the presence of inside jammers. In
TDBS, broadcast is realized as a series of unicast transmis-
sions distributed in frequency and time. Because the ad-
versary is limited in the number of channels he can jam,
several unicast transmissions remain interference-free. We
mapped the problem of constructing hopping sequences for
TDBS to the problem of 1-factorization of complete graphs.
We analytically evaluated the security properties of TDBS
under an external and an internal threat model and showed
that TDBS maintains broadcast communications even when
multiple nodes are compromised. We verified our theoretical
analysis using extensive simulations.

Acknowledgments
Part of this work was conducted while M. Krunz was a
visiting researcher at the University of Carlos III, Madrid,
and IMDEA Networks, Spain. This research was supported
in part by NSF (under grants CNS-0844111, CNS-0721935,
CNS-0904681, CNS-1016943, IIP-0832238), Raytheon, and
the Connection One center. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those
of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

9. REFERENCES
[1] D. Adamy. EW 101: A first course in electronic

warfare. Artech House Publishers, 2001.

[2] K. Appel and W. Haken. Every planar map is four
colorable: Part I. Illinois Journal of Mathematics,
21(3):491–567, 1977.

[3] P. Bahl, R. Chandra, and J. Dunagan. SSCH: slotted
seeded channel hopping for capacity improvement in



IEEE 802.11 ad-hoc wireless networks. In Proc. of
MOBICOM, pages 216–230, 2004.

[4] L. C. Baird, W. L. Bahn, M. D. Collins, M. C.
Carlisle, and S. C. Butler. Keyless jam resistance. In
Proc. of the IEEE Workshop on Information
Assurance United States Military Academy, 2007.

[5] K. Bian, J. Park, and R. Chen. A quorum-based
framework for establishing control channels in
dynamic spectrum access networks. In Proc. of
MOBICOM, pages 25–36, 2009.

[6] A. Chan, X. Liu, G. Noubir, and B. Thapa. Control
channel jamming: Resilience and identification of
traitors. In Proc. of ISIT, 2007.

[7] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar.
Throughput and fairness guarantees through maximal
scheduling in wireless networks. IEEE Transactions on
Information Theory, 54(2):572–594, 2008.

[8] J. T. Chiang and Y.-C. Hu. Dynamic jamming
mitigation for wireless broadcast networks. In Proc. of
INFOCOM, pages 1211–1219, 2008.

[9] Y. Desmedt, R. Safavi-Naini, H. Wang, C. Charnes,
and J. Pieprzyk. Broadcast anti-jamming systems. In
Proc. of the IEEE International Conference on
Networks (ICON), pages 349 – 355, 1999.

[10] J. H. Dinitz and D. R. Stinson. A hill-climbing
algorithm for the construction of one-factorizations
and room squares. SIAM J. Algebraic Discrete
Methods, 8(3):430–438, 1987.

[11] A. Gupta, X. Lin, and R. Srikant. Low-complexity
distributed scheduling algorithms for wireless
networks. IEEE/ACM Transactions on Networking
(TON), 17(6):1846–1859, 2009.

[12] IEEE. IEEE 802.11 for wireless local area networks.
http://www.ieee802.org/11/.

[13] H. Ishii and H. Kakugawa. A self-stabilizing algorithm
for finding cliques in distributed systems. In Proc. of
the 21st IEEE Symposium on Reliable Distributed
Systems (SRDS’02), pages 390–395, 2002.

[14] L. Lazos, S. Liu, and M. Krunz. Mitigating
control-channel jamming attacks in multi-channel ad
hoc networks. In Proc. of WiSec, pages 169–180, 2009.

[15] A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang.
Defending DSSS-based broadcast communication
against insider jammers via delayed seed-disclosure. In
Proc. of the Annual Computer Security Applications
Conference (ACSAC’10), 2010.

[16] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized
differential DSSS: Jamming-resistant wireless
broadcast communication. In Proc. of INFOCOM,
2010.

[17] E. Mendelsohn and A. Rosa. One-factorizations of the
complete graph-a survey. Journal of Graph Theory,
9(1):43–65, 1985.

[18] G. Noubir and G. Lin. Low-power DoS attacks in data
wireless LANs and countermeasures. Mobile Compu-
ting and Communications Review, 7(3):29–30, 2003.

[19] R. Poisel. Modern communications jamming principles
and techniques. Artech House on Demand, 2004.

[20] C. Popper, M. Strasser, and S. Capkun.
Jamming-resistant broadcast communication without

shared keys. In Proc. of the USENIX Security
Symposium, 2009.

[21] C. Popper, M. Strasser, and S. Capkun. Anti-jamming
broadcast communication using uncoordinated spread
spectrum techniques. IEEE Journal on Selected Areas
in Communications, 28(5), 2010.

[22] S. Sarkar and L. Tassiulas. End-to-end bandwidth
guarantees through fair local spectrum share in
wireless ad-hoc networks. IEEE Transactions on
Automatic Control, 50(9):1246–1259, 2005.

[23] G. Sharma, C. Joo, and N. Shroff. Distributed
scheduling schemes for throughput guarantees in
wireless networks. In Proc. of the 44th Annual
Allerton Conference on Communications, Control, and
Computing, 2006.

[24] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K.
Levitt. Spread Spectrum Communications Handbook.
McGraw-Hill, 2001.

[25] P. Tague, M. Li, and R. Poovendran. Probabilistic
mitigation of control channel jamming via random key
distribution. In Proc. of IEEE PIMRC, pages 1–5,
2007.

[26] P. Tague, M. Li, and R. Poovendran. Mitigation of
control channel jamming under node capture attacks.
IEEE Transactions on Mobile Computing,
8(9):1221–1234, 2009.

[27] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control,
37(12):1936–1948, 2002.

[28] P. Tosic and G. Agha. Maximal clique-based
distributed group formation for autonomous agent
coalitions. In Proc. of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), 2004.

[29] W. Wallis. One-factorizations of complete graphs.
Contemporary Design Theory: A Collection of
Surveys, pages 692–731, 1992.

[30] W. Wallis. One-factorizations. Kluwer Academic
Publishers, 1997.

APPENDIX
A. Proof of Proposition 2: To complete a broadcast in
the SU mode, the sender must unicast the broadcast message
to (2n−1) receivers. The (2n−1) transmissions correspond
to the (2n − 1) 1-factors of F2n. Each factor requires ⌈ n

K
⌉

time slots to be completed (here, all transmissions of a 1-
factor are completed before transmissions of other 1-factors
can proceed, in order to avoid schedule conflicts). Hence,
the broadcast delay is equal to ⌈ n

K
⌉ times the number of

factors of F2n.

B. Proof of Proposition 3: We first prove that any
broadcast transmission in the AB mode is completed af-
ter ⌈log2(2n)⌉ 1-factors. Without loss of generality, assume
that a broadcast is initiated by node Fi(k, 1), located in the
kth row of Fi. With the completion of Fi, the relay set is
Rj

i = {Fi(k, 1), Fi(k, 2)}. After the execution of Algorithm
3, nodes Fi(k, 1) and Fi(k, 2) appear in adjacent rows (due
to the cyclic nature of Algorithm 3, rows 1 and 8 are con-
sidered adjacent) on the 1-factor Fi+1. This can be easily



verified by reversing the mapping from Fi+1 to Fi in lines
8-15 of Algorithm 3. Because the pair (Fi(k, 1), Fi(k, 2))
appears on separate rows on Fi+1, each node will relay a
broadcast to two new nodes, thus increasing Rj

i+1 to four.
Further execution of Algorithm 3 divides the nodes in the

relay set Rj
i+1 to four adjacent rows. Since none of the

nodes in Rj
i+1 appears on the same row, the relay set after

the completion of factor Fi+1 increases to eight nodes. Fol-
lowing the recursive application of the splitting algorithm,
the relay set after the completion of ⌊log2(2n)⌋ 1-factors

has a size of 2⌊log2 2n⌋. If ⌊log2(2n)⌋ = log2(2n), the broad-

cast is complete since 2log2(2n) = 2n. Otherwise, one extra
1-factor is needed to relay the broadcast to the remaining
2n − 2⌊log2(2n)⌋ nodes. Because 2⌊log2(2n)⌋ > n, the split-
ting algorithm places n nodes from the relay set into the
n rows of the ⌊log2 2n⌋ + 1 = ⌈log2(2n)⌉th 1-factor. These
n relays complete the broadcast operation. Combining the
two cases yields a required number of 1-factors that is equal
to ⌈log2(2n)⌉. Proposition 3 follows by noting that every
1-factor requires ⌈n

k
⌉ slots to be completed.

C. Proof of Proposition 4: Suppose that an arbitrary
node j attempts a broadcast transmission in the presence
of an external jammer. This broadcast is completed in a
single 1-factorization if the jammer is unsuccessful in jam-
ming the communication of j for 2n − 1 consecutive slots.
Because hj is random, a transmission of node j is successful
with probability

(

1− J
K

)

. Moreover, the events of a success-
ful transmission of node j at slot i and slot w, i 6= w are
independent. Hence,

Pr[Z = 1] =

(

1−
J

K

)2n−1

= (1− p)2n−1 .

The broadcast is completed in two 1-factorizations if every
receiver is jammed at most one time, and at least one re-
ceiver is jammed on the first 1-factorization. Taking into
account all possible combinations,

Pr[Z = 2] =

2n−1
∑

k=1

(

2n− 1

k

)

(1− p)2n−1−kpk(1− p)k.

Generalizing to the case of Z = i, it follows that

Pr[Z = i] =

2n−1
∑

k=1

(

2n− 1

k

)

(1− pi−1)2n−1−k

p(i−1)k(1− p)k,

= (1− pi−1)2n−1
2n−1
∑

k=1

(

2n− 1

k

)

(

pi−1(1− p)

1− pi−1

)k

.

Proposition 4 follows from the definition of the expecta-
tion, i.e., E[Z] =

∑

i
iPr[Z = i].

D. Proof of Proposition 5: The lower bound immediately
follows from Proposition 3. The broadcast delay in the ab-
sence of a jammer is equivalent to the delay in the presence
of an external jammer who is unsuccessful in jamming any
communicating pair for ⌈log2(2n)⌉ − 1 slots. Hence, after
the first successful relay, the lower bound on D follows.

To compute the upper bound on D, assume that an ar-
bitrary node j wants to broadcast a message m to the re-

maining (2n − 1) nodes. Let ai denote the size of the relay
set in slot i. Initially, a0 = 2, i.e., node j has completed its
first successful relay. Once ai ≥ 2, the adversary can jam at
most one of the pairs relaying m. The size of the relay set
in this worst-case scenario grows according to the formula.

ai = 2ai−1 − 1 = 2i + 1, i ≤ ⌈log2(2n)⌉ − 1, (8)

where ai is computed recursively with a0 = 2. To show the
validity of (8), we refer to the proof of Proposition 3, where
we showed that for ai ≤ n, the size of the relay set doubles
with the increment of i. Because the adversary jams at most
one frequency band per time slot, in the worst case, ai =
2ai−1 − 1. This is true until ai ≥ n, in which case the size of
the relay set can no longer double. In slot i, i ≤ ⌈log2(2n)⌉−
1, the relay set becomes larger than n for the first time. That
is, it takes i = ⌈log2(2n)⌉ − 1 slots until more than half
the nodes can relay message m. These ai ≥ n relay nodes
communicate with the remaining 2n−2i−1 ≤ n nodes that
have not yet received m. Since only one frequency band is
jammed, the number of nodes that have received m at the
end of slot (i + 1) is equal to (2n − 2). In this worst case,
only one node has not received m after ⌈log2(2n)⌉ slots.

E. Proof of Proposition 6: Let x be the number of
frequency bands over which the r compromised nodes are
scheduled to communicate according to the 1-factor F . The
number of bands over which legitimate communications take
place in each slot is reduced to K − x. Hence, the jamming
probability is increased to p = J

K−x
. To derive bounds on

p, we consider the lowest and highest values of x. If the
compromised nodes are scheduled to communicate with each
other at 1-factor F, then x = xmin = ⌈ r

2
⌉, where the ceil-

ing function is used to account for an odd r. This value of
x yields the lower bound on p. On the other hand, if all
r nodes are scheduled to communicate with legitimate ones
(appear on separate rows in F ), then x = xmax = r, and
p attains its maximum value. Note that p ≤ 1 and hence,
r ≤ K − J. When r is larger than K − J , there are 1-factors
where all transmissions are jammed with certainty.

F. Proof of Proposition 8: At each time slot, the proba-
bility that an adjacent cluster fails to receive a broadcast is
due to: (a) all NL links are shared with compromised border
nodes, and (b) the links shared with uncompromised border
nodes are jammed by the adversary. So the probability that
a neighboring cluster fails to receive a broadcast is

Pfail = PNL

c +

NL
∑

i=1

(

NL

i

)

(

J(1− Pc)

K − r

)i

.

The probability that at least one of the neighboring clusters
successfully receive the broadcast at a time slot is

Psuccess = 1− PNC

fail.

The broadcast among adjacent nodes forms a Bernoulli trial
with a success probability Psuccess, so the average delay until
the first success is 1/Psuccess, which leads to our result.

G. Proof of Proposition 9: For any neighboring cluster,
the probability that it can not receive a broadcast is that all
NL links are shared with compromised border nodes. This
probability is PNL

c . So the expected number of neighboring
clusters that can get a broadcast is NC ·(1−PNL

c ). Dividing
this value with NC , yields E[DIV ].


