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Abstract—Smart adversaries can exploit the publicly known
frame structure of OFDM-based Wi-Fi protocols to disrupt
communications by strategically jamming specific time samples
or specific subcarriers. Such attacks are very difficult to detect by
traditional techniques like spectral analysis and signal strength
indicators. Machine learning (ML) based methods have been
proposed to tackle this problem. However, existing ML methods
are computationally intensive and perform well only at low
signal-to-jamming power ratios (SJRs). In this paper, we propose
a computationally efficient deep convolutional neural network
(DCNN) consisting of only four convolution layers to detect and
classify several smart jamming attacks in Wi-Fi networks. To deal
with the time-frequency selectivity of smart jamming, we apply
the continuous wavelet transform (CWT) to partially overlapped
segments of the received I/Q samples to extract features. The
scalogram of the CWT is used as input to the DCNN. We
focus on three smart jamming attacks: preamble jamming,
pilot jamming, and interleaving jamming. These attacks share
similar characteristics, making their differentiation particularly
challenging. Our proposed classifier achieves high accuracy in
detecting and classifying these jamming attacks across a range
of SJRs, from −6 dB to 15 dB, with an overall classification
accuracy of 98%. Even at high SJR levels, the accuracy remains
high at around 90%. We also train the classifier to be robust
against partial preamble jamming and pilot jamming, The
resulting classification accuracy is over 90% at SJRs up to
12 dB. Additionally, we compare our classifier with one that
uses the spectrogram (short-time Fourier transform) as input
to the DCNN, and demonstrate the superior performance of the
proposed scalogram-based classifier, particularly in the high SJR
regime.

Index Terms—Smart Jamming classification, Deep Neural
Networks, Wavelet analysis, Wireless security, Wi-Fi networks.

I. INTRODUCTION

Widespread adoption of Wi-Fi networks has made them

a prime target for adversarial attacks. These attacks exploit

the deterministic and publicly known structure of the Wi-

Fi frame to launch various attacks. One notable category

of these attacks is smart jamming. Over the past decades,

numerous smart jamming attacks on Wi-Fi networks have been

identified. Preamble jamming is one such attack. This attack

is launched against legacy Wi-Fi preambles [1]–[3], aiming at

disrupting the detection and synchronization processes of Wi-

Fi frames. Modern Wi-Fi networks that implement orthogonal
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frequency-division multiplexing (OFDM) are particularly sus-

ceptible to smart jamming. For instance, the so-called pilot
jamming specifically targets pilot subcarriers, which are cru-

cial for channel estimation and phase tracking [4]. Interleaving
Jamming [5] involves jamming every three data subcarriers

that carry adjacent non-interleaved bits to cause burst errors.

Zhao et al. [6] transmitted jamming signals of sufficient

frequency offsets from a few target subcarriers to sabotage

the orthogonality of OFDM systems. Recent works [7], [8]

introduced attacks that modify the Signaling Fields of the

frame preamble to jam various versions of Wi-Fi. All these

jamming attacks operate at the Physical (PHY) layer and result

in denial-of-service (DoS), which can potentially be used as

a basis for launching higher-layer attacks. Accordingly, there

is a critical need for automated detection and classification of

smart jamming attacks, so that appropriate countermeasures,

such as those proposed in [3], [5], [7]–[10], can be imple-

mented to mitigate the impact of these attacks in real-time.

The low duty cycle (time domain) and/or narrow and

constantly changing frequencies associated with smart jam-

ming pose significant challenges for detection methods. In

particular, traditional jamming detection techniques that rely

on spectral analysis or signal strength are ineffective against

these attacks. The authors in [6], [8] proposed detection

approaches tailored to their respective smart attacks. However,

these approaches suffer from performance degradation under

certain signal-to-jamming power ratios (SJRs) or at specific

attack locations. Moreover, these methods cannot differentiate

between different smart jamming attacks. For example, by

using frequency-domain analysis proposed in [6], the attacks

in [6] would be misclassified as pilot jamming [4] or inter-

leaving jamming [5] as all these attacks exhibit narrow-band

characteristics. Additionally, jamming attacks discussed in [3],

[4], [6] result in a rotated constellation of received signals,

making them indistinguishable through constellation analysis.

Classifying these smart jamming based on long-term error

rates is infeasible because such errors can be attributed to a

variety of attacks or poor channel quality, not to mention the

long inference time.

Recently, researchers have turned to machine learning (ML)

techniques to detect and classify smart jamming attacks. They

have applied several time-frequency transforms (TFT), includ-

ing short-time Fourier transform (STFT), continuous wavelet

transform (CWT), and Choi–Williams transform, to the re-



ceived signal to generate images that are fed into ML models.

Various ML models were explored in [11] to detect and

classify four jamming attacks on Wi-Fi-connected unmanned

aerial vehicles (UAVs). These models incorporated features

like signal-to-noise ratio (SNR), energy thresholds, and key

OFDM parameters, and they were built on Random For-

est (RF), Decision Tree (DT), K-Nearest Neighbors (KNN),

among others. While the RF model achieved an accuracy

of approximately 92%, the accuracy of other models ranged

from 75% to 85%. Additionally, four popular DCNN models

(AlexNet, VGG-16, ResNet-50, and EfficientNet-B0) were

trained using the spectrogram image of the received signal.

Although these models reported high accuracy exceeding 90%,

critical information such as the SJRs, spectrogram parameters,

and the number of signal samples used for the spectrogram

were not provided. Moreover, it is worth noting that the four

attacks studied in [11] exhibit distinct characteristics, includ-

ing single-subcarrier jamming versus successive-subcarrier

jamming and shot-noise jamming versus continuous barrage

jamming across the entire spectrum. Gecgel et al. focused on

detecting and classifying barrage jamming and jamming of the

reference and synchronization signals in LTE networks [12].

They applied DNNs and support vector machines (SVMs) to

spectral images obtained from three different TFTs. However,

the accuracy they got at SJRs of 5 dB and 10 dB ranged from

25% to 70%. Such performance is unacceptable as these two

SJR levels are considered moderate for a successful attack,

given that reference and synchronization signals occupy only

a small portion of time-frequency resources in an LTE frame.

Most importantly, due to the fundamental differences between

LTE and Wi-Fi protocols, the classifiers in [12] cannot be

directly applied to Wi-Fi networks.

While it appears intuitive to use TFTs to preprocess the

signal before applying ML classification, the utilization of

spectrogram and scalogram images raises two concerns. First,

cropping these images to fit specific sizes for ML models may

lead to the loss of essential features. Second, training with im-

ages represented in three dimensions can be computationally

intensive, particularly for the DNNs employed in [11].

In this paper, we develop a DCNN to automatically classify

smart jamming attacks on Wi-Fi systems. Our classifiers use a

time-frequency representation of the received signal as input.

Specifically, we propose to feed the DCNN with the scalogram

arrays of the CWT, which is applied to partially overlapped

segments of the received I/Q samples. Our approach reduces

the dimension and complexity of the classifier while pre-

serving essential information. This is in contrast to cropped

or resized spectrogram or scalogram images commonly used

in the literature. Particularly, our proposed DCNN has less

than 1% trainable parameters of those used in [11], [12]. We

analyzed the proposed scalogram-based DCNN classifier by

considering three smart jamming attacks in Wi-Fi systems:

preamble jamming, pilot jamming, and interleaving jamming.

These attacks were selected because they exhibit similar char-

acteristics, making their classification particularly challenging.

Transmitter

Receiver
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Preprocessing

(CWT)

Classification

(DCNN)
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Fig. 1. System model.

We also adapt these attacks, initially designed for legacy Wi-

Fi networks, to more recent IEEE 802.11ac Wi-Fi networks.

As there is no publicly available dataset for such attacks,

we generate synthetic data by simulating legitimate Wi-Fi

signals and applying the respective attacks using MATLAB.

Our classifier also naturally serves as a detector since we

add a class that represents normal unjammed Wi-Fi signals.

We employ Morlet and Gaussian wavelets for the CWT and

observe only minor differences between their performance.

Both wavelets achieve 98% accuracy across a wide range

of SJRs between −6 dB and 15 dB. Even at a high SJR of

15 dB, the accuracy is still around 90%. We further experiment

with a shallower DCNN, resulting in around 10% reduction in

accuracy only at the high SJR of 15 dB. Furthermore, we study

the impact of replacing the scalogram arrays with the spectro-

gram arrays as input. Meanwhile, we make slight adjustments

to the DCNN architecture to accommodate the input size.

However, we observe that with this modification, the accuracy

is significantly degraded at SJRs of 12 ∼ 15 dB, demonstrating

the superior performance of the proposed scalogram-based

approach.

II. SYSTEM AND ATTACK MODELS

A. System Model

As shown in Fig. 1, we consider a system that consists of

a legitimate Wi-Fi transmitter-receiver pair and an adversary,

whose goal is to launch smart jamming attacks against legiti-

mate Wi-Fi signals. We define SJR as the power ratio between

the legitimate signal and the jamming signal at the receiver

while the jamming is active. The defender resides at the re-

ceiver and has two modules: signal preprocessing and DCNN-

based classification. The defender does not know a priori the

presence of jamming nor the specific type of jamming attacks

it encounters. It samples the received baseband I/Q signals and

tries to detect the occurrence of a jamming attack during the

sampled segment, and further identifies the type of jamming

attack in progress.

B. Attack Models

In this paper, we consider three typical smart jamming

attack models. Without loss of generality, we illustrate them in

an IEEE 802.11ac network, which is a representative example

of OFDM-based Wi-Fi networks.
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Fig. 2. Three smart jamming attacks considered in this paper. (The Data field should be longer in reality but cropped here to save space.)

1) Preamble Jamming: As shown in Fig. 2, the data

of an IEEE 802.11ac frame is prepended by a preamble,

which has two parts: the legacy preamble and the very high

throughput (VHT) preamble. Wi-Fi networks rely on the

preamble to implement frame detection, timing, frequency

synchronization, channel estimation, and PHY-layer signaling.

As depicted in Fig. 2(a), the adversary transmits Gaussian

noise across the receiver’s bandwidth to jam the preamble. The

adversary can target either the entire preamble (full preamble

jamming) or specific portions of it, such as the VHT preamble

(VHT preamble jamming), to disable its functionality, hence,

disrupting the reception of the frame.
2) Pilot Jamming: In the IEEE 802.11ac system, a specific

set of subcarriers at indices kP are designated as pilot subcarri-

ers to correct frequency offsets and phase noise over time. For

example, in a 20 MHz channel, pilot subcarriers are at indices

kP = {±21,±7}. Fig. 2(b) shows pilot jamming [4] that

targets all pilot subcarriers to distort them, and further disrupt

the data recovery. We call the attacks that target a subset of

the pilot subcarriers partial pilot jamming. To successfully

launch a pilot jamming, the adversary needs first to detect

the frame and synchronize with the carrier frequency of the

receiver. Subsequently, the adversary transmits Gaussian noise

on subcarriers at indices k ∈ kP across the remaining frame.
3) Interleaving Jamming: Interleaving jamming [5] ex-

ploits the fact that two adjacent data bits are separated

by a few (four in IEEE 802.11ac) data subcarrier (DSC)

spacings after the first-round permutation of the interleaver.

By jamming every four DSCs, burst errors are induced that

are hard to be corrected by the channel decoder. Fig. 2(c)

shows one scenario of such attack, where 7 DSCs at indices

kI = {4, 8, 12, 16, 20, 24, 28} are jammed by Gaussian noise.

Similar to pilot jamming, frame detection and synchronization

are conducted by the adversary before transmitting the noise

throughout the remaining frame.
These smart jamming attacks focus energy on selected time

or frequency domains. Therefore, they can succeed with a

power lower than the power of the legitimate signal, i.e., a

high positive SJR. To validate this, we conduct simulations

of these attacks over a 20MHz channel, targeting IEEE

802.11ac frames whose data is encoded with a rate of 3/4 and

modulated by 16-QAM. The results show that pilot jamming

is the most energy-efficient, which leads to frame errors at

an SJR up to 23 dB. Whereas the highest achievable SJRs

for successful interleaving jamming and preamble jamming

are 20 dB and 10 dB, respectively. Besides, at such high SJRs,

these jamming attacks cannot be identified by an Oscilloscope

or a spectrum analyzer.

III. PROPOSED DEFENSE

A. Pre-processing with CWT

As demonstrated in Section II-B, smart jamming attacks

conceal the jamming signal in either time and/or frequency

domains by jamming for a short time or narrow time-variant

frequencies. To analyze and identify the specific type of

jamming, it is intuitive to examine the time-frequency rep-

resentation of the signal. Fourier transform (FT) is useful for

analyzing stationary signals. However, for non-stationary sig-

nals that exhibit changes in frequency and amplitude over time,

different signals with the same frequency components but

occurring at different times produce identical FT results. STFT

and CWT overcome this limitation, as they can capture time-

frequency characteristics simultaneously. STFT, with a fixed

window size, suffers from poor frequency or time resolution if

the window length is excessively narrow or wide, respectively.

On the other hand, CWT, with varying window sizes, provides

a multi-resolution representation of the signal at different

positions [13]. This allows for the extraction of local spectral

and temporal information simultaneously, making it an ideal

approach for analyzing smart jamming attacks.

CWT is defined as a convolution between the signal y(t)
and a basis function ψ(t) known as the wavelet [14], i.e.,

W (a, τ) =
1√
a

∫ ∞

−∞
y(t) ∗ ψ( t− τ

a
)dt (1)

where a is the scale parameter that determines the frequency

resolution and τ is the position parameter of the wavelet that

determines the time resolution. More specifically, a small a
compresses the wavelet to reflect high-frequency details, and

vice versa. In addition to adjusting the scale and position

parameters when applying CWT, it is also possible to select

different wavelet functions depending on the characteristics

of the signal under consideration. In this work, we primarily

use two complex wavelets [15] for the preprocessing of the

received complex signals. The complex Morlet Wavelet is

given by:

ψ(t) =
1√
πfb

exp(2jπfct) exp(
−t2

fb
) (2)

where fb is the bandwidth parameter and fc is the center

frequency of the wavelet. The Gaussian Derivative Wavelet
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Fig. 3. Example scalogram images by Morlet CWT of the clean signal and the signals subjected to three smart jamming attacks.
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Fig. 4. DCNN1 architecture used for smart jamming classification.

TABLE I
NUMBER OF TRAINABLE PARAMETERS OF THE PROPOSED CLASSIFIER

WITH INPUT SIZE 400× 100 AND STATE-OF-ART CLASSIFIERS IN [11].

Proposed AlexNet VGG-16 ResNet-50
32292 62000000 138000000 23000000

(”gaus1”) is the first-order derivative of the function:

ψ(t) = C exp(−jt) exp(−t2) (3)

where C satisfies the norm of the first-order derivative of |ψ|
equal to 1.

To detect stealthy jamming signals effectively, we employ

a sliding window approach to sample partially overlapping

segments with a sample rate of Fs. Denote the window size

as w and the stride as s, in the units of OFDM symbols. After

applying CWT to a received signal segment, we can get a

scalogram array of size T × F , where T = wFs and F is

the number of frequencies for CWT. Fig. 3 depicts example

scalogram images of the signal in the absence of jamming and

signals subjected to three smart jamming within a 20MHz

channel. The images are obtained by CWT with a Morlet

wavelet whose parameters are fb = 2Hz and fc = 1Hz. Here,

the signal segment includes 400 baseband I/Q samples over

20μs. The x-axis is the time, while the y-axis is the frequency.

In the absence of jamming, the energy distribution is low and

dispersed across the entire time-frequency plane. However,

due to pilot jamming, the scalogram exhibits concentrated high

energy around four frequency components, extending over

time. In contrast, interleaving jamming displays high-energy

concentrations across several frequencies in two separate do-

mains. Lastly, the energy distribution resulting from preamble

jamming aligns with the periodicity of the preamble in the

time domain and extends over a broad frequency range. These

distinct energy patterns in the scalogram images validate our

previous analysis and provide useful insights for identifying

different types of jamming attacks.

B. DCNN-based Classifier

There are many popular DCNNs (e.g.,ResNet) that are good

at image classification and widely used for signal classification

recently. However, we decide to design our own DCNN for

two main reasons. First of all, those popular DCNNs require

specific image sizes, which can limit the time-frequency res-

olution of the scalogram. Cropping or resizing the scalogram

images to fit these specific input dimensions may result in the

loss of essential features. Secondly, training images can be

computationally intensive, as reported in [11]. Therefore, we

propose a computationally efficient DCNN architecture called

DCNN1, shown in Fig. 4, as the defender’s classifier. Instead

of using the scalogram image, we propose to directly use

the T × F scalogram array of the sampled signal segment

as the input to the DCNN1. The classifier consists of four

convolutional layers, three pooling layers, and one fully-

connected layer. The kernel size and the number of filters for

each layer are specified in the respective blocks, and a stride

size of 2 is used for most convolutional and pooling layers,

except for the second and third convolutional layers. The dense

layer is connected to the output layer, allowing the classifier

to predict one of four classes. In Table I, We compare the

number of trainable parameters of our proposed DCNN1 and

models used in [11]. Our proposed model requires less than

1% of the parameters used in other models.

Throughout the network, rich features are extracted by

the convolutional layers to capture the time-frequency char-

acteristics of the signal segment. The two pooling layers

reduce the dimensionality of the features, thereby improving

generalization and computational efficiency. ReLU activation

functions are used in all convolutional layers, while the output

layer utilizes Softmax activation. The Adam optimizer with

a learning rate denoted as r. To mitigate overfitting, early

stopping is applied by monitoring the categorical cross-entropy

loss for the validation dataset with a patience of three.

IV. PERFORMANCE EVALUATION

A. Data Collection

As no open-source dataset for Wi-Fi traces subjected to

these three smart jamming attacks is available, we generate

a synthetic dataset using the Matlab WLAN Toolbox [16].

The parameters of the 802.11ac system used for the Wi-Fi

trace are listed in Table II. We create legitimate Wi-Fi traces

in which each frame carries 1500 bytes of data. With this

configuration, each frame includes 88 OFDM symbols within

which the first 5 symbols are the legacy preamble and the

following 5 symbols are the VHT preamble. We consider

a typical indoor environment with no large-scale fading. To



TABLE II
PARAMETERS FOR DATA GENERATION.

Parameter Value Parameter Value Parameter Value

Channel Model TGac Model-B Frequency 5.25 GHz Bandwidth 20 MHz
Frequency offset 0 SNR 20 dB SJR −6 : 3 : 15 dB
data size/frame 1500 bytes Modulation 16-QAM Coding rate 3/4

OFDM symbols/frame 88 Window size 5 OFDM symbols Sample stride 1 OFDM symbol

TABLE III
SJR AVERAGED OVER THE WHOLE FRAME CORRESPONDS TO SJR1 WHEN

THE JAMMING IS ACTIVE FOR PREAMBLE JAMMING (UNIT: DB).

SJR −6 −3 0 3 6 9 12 15
SJR1 3.5 6.5 9.5 12.5 15.5 18.5 21.5 24.5

obtain a realistic dataset, we apply the TGac Channel Model-

B [17] and add AWGN on top of it. The SNR is set to

20 dB, which is 5 dB higher than the minimum requirement for

reliable communication of the data modulated by 16-QAM and

coded by a rate of 3/4. For simplicity, we assume no frequency

offset among the three parties involved. In the case of pilot

jamming and interleaving jamming, the attacks are assumed

to be active after the adversary detects and synchronizes with

the legitimate frame at the end of the fourth OFDM symbols

and last throughout the remaining duration of the frame,

despite targeting only a few subcarriers. For each jamming

scenario, the adversarial signal is generated in accordance with

Section II-B.

Generating thousands of packets for the dataset is infeasible,

so we employ data augmentation techniques to expand our

dataset. However, traditional data augmentation methods like

flipping, rotation, and scaling could distort the temporal and

frequency features of RF signals, making them unsuitable for

our purposes. Consequently, we opt for a sliding window ap-

proach to augment our data. With the window size of 5 OFDM

symbols and a stride of 1 OFDM symbol, two consecutively

sampled segments have an 80% overlap. This window size

allows the defender to capture per-symbol frequency-domain

features for pilot jamming and interleaving jamming, as well

as time-domain features for full or partial preamble jamming.

Moreover, a stride of one OFDM symbol helps prevent mis-

detection. The presence of multipath fading and AWGN in

the channel ensures sufficient difference between the non-

overlapping portion of the two segments, yet belong to the

same class. However, the overlapping may cause overfitting.

To avoid any correlation between the training, validation, and

test datasets, we separately generate Wi-Fi frames for each of

them using different random seeds for data and channels. It is

notable that even if the jammed signal only appears in part of

the window, we still label the segment as the corresponding

jamming. For each class, we generate 3000 segments for

training, and 500 segments each for validation and testing

at a specific SJR. In total, we collected 128000 segments of

received signals across eight SJRs (see Table III), which are

further preprocessed by CWT as explained in Section III-A.

(a) Overeall (b) SJR = 15 dB

Fig. 5. Confusion matrices of the optimal classifier under jamming attacks.

B. Optimal Classifier Performance

We first employ CWT with Morlet for preprocessing and the

DCNN1 in Fig. 4 for the classifier. The optimizer is Adam with

a learning rate r = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e − 8.

The batch size is set to 128 which runs for 10 ∼ 20 epochs.

Here, we only consider the full preamble jamming and the

other two smart jamming attacks. In practice, the defender

does not know the SJR in advance. So we train the classifier

with a mixture of data from all SJR values so that the defender

can identify which class the test sample is regardless of the

SJR. However, for evaluation purposes, we still test the per-

formance at each SJR value in addition to the overall SJRs. As

seen from Fig. 5(a), when tested over all SJRs, the proposed

approach can predict each class with an accuracy greater than

97%. The specific classification accuracy at each SJR is plotted

in Fig. 6, where the accuracy is above 98% for SJR less than

15 dB and suddenly drops to 90% at the challenging SJR

of 15 dB. The detailed performance at 15 dB SJR is shown

in Fig. 5(b). Notably, the defender occasionally misclassifies

the stealthy pilot jamming and interleaving jamming to clean

or each other. Overall, the classifier achieves high precision

and recall of 0.9826 and 0.9825, respectively.

C. Impact of Different TFTs and CNN structure

We further form a simpler DCNN2 by removing the first

three shaded layers of DCNN1 in Fig. 4. This change leads to

a decrease in accuracy of approximately 10% only at a 15 dB

SJR by around . To study the impact of different wavelets, we

compare Morlet wavelets with Gaussian derivative wavelets,

while using the same DCNN1 model. We can see from Fig. 6

that there is no performance gap between the two wavelets.

Finally, we exploit STFT instead of the CWT for preprocess-

ing and the window size for the STFT is 64. Due to the

change in the input size, we reduce the kernel size of the

first convolutional layer from 7× 7 to 2× 2. The accuracy is

comparable to the ones by CWT up to 9 dB SJR. But when it
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Fig. 7. Classification accuracy vs. SJRs for Morlet CWT DCNN1 on datasets
include VHT preamble jamming and partial pilot jamming.

comes to high SJRs, the accuracy is degraded by 5%. When

we use STFT for the DCNN2 classifier, the accuracy even

deteriorates.

D. Robustness against Partial Jamming

To enhance the robustness of our classifier, we trained the

Morlet-DCNN1 model using a combination of full preamble

jamming and VHT preamble jamming samples, while keeping

samples for the other three classes fixed. The classification

accuracy across various SJRs is shown in Fig. 7, where it

significantly decreases from 95% to around 73% as the SJR

increases from 9 dB to 12 dB. This reduction in accuracy is

primarily due to VHT preamble jamming, where the sampled

window sometimes covers only a small portion of the jammed

signal. However, the classifier makes multiple decisions as

it slides the window along the received signal, ultimately

enabling accurate detection and classification of the attack.

We also consider partial pilot jammings to train a robust

classifier. In this case, we train the model with a mixture

of full pilot jamming and various partial pilot jammings that

target 1 ∼ 4 pilot subcarriers at random indices. The classifier

is quite robust against partial pilot jamming and achieves an

accuracy above 95% for SJRs up to 12 dB. However, when

the SJR increases to 15 dB, the accuracy drops to around

86%. Indeed, the scalograms of various partial pilot jamming

exhibit obvious frequency selectivity, showing horizontal bars

resembling those in Fig. 3, although the number of bars varies.

V. CONCLUSION

We proposed to detect and classify smart jamming attacks

in Wi-Fi networks using a DCNN-based classifier with the

scalogram array of the received signal as the input. We demon-

strated that CWT performs better than STFT in extracting

time-frequency features of the jammed signal, which improves

the classification accuracy, especially in the challenging high

SJR regime. Our proposed approach also has a much lower

complexity when compared with state-of-the-art approaches

while beating the accuracy of those approaches. Though the

classifier does not know the SJR in advance, it achieves a

classification accuracy above 98% across a range of SJRs from

−6 dB to 15 dB, and the accuracy at 15 dB SJR is 90%. We

also improved the robustness of our classifier against partial

preamble jamming and partial pilot jamming. In these cases,

we achieved accuracy over 90% for SJR up to 12 dB. It

demonstrates the practicality and effectiveness of the proposed

approach. Our approach can be generalized to detect and

classify any other smart jamming with necessary adaptation

on the CWT, DCNN structure, and windowing.
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