
DL-SIC: Deep Learning Aided Successive
Interference Cancellation in Shared Spectrum

Zhiwu Guo, Wenhan Zhang, Ming Li, Marwan Krunz, and Mohammad Hossein Manshaei
Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, 85721, USA

Email: {zhiwuguo, wenhanzhang, lim, krunz, manshaei}@arizona.edu

Abstract—With the increasing demand for wireless capacity,
multiple wireless technologies will inevitably coexist over shared
bands. Successive interference cancellation (SIC) is a promising
technique for improving spectrum utilization by utilizing the
difference in the powers of concurrently received signals. How-
ever, enabling SIC over a shared band faces several challenges,
related to the heterogeneity of the coexisting technologies, the
unknown powers of received signals, and the uncoordinated and
asynchronous nature of transmissions. Traditional SIC (T-SIC)
receivers cannot simultaneously achieve low decoding latency
and low decoding bit error rate (BER). To address these
challenges, we propose DL-SIC, a deep learning approach for
accelerating the operation of an SIC receiver. DL-SIC includes a
deep learning-based protocol detector for identifying overlapping
packets, as well as a deep learning-based SIC classifier for
accurate determination of the SIC decoding order in scenarios
where the relative strengths of the signals are unknown. We con-
duct simulations and over-the-air (OTA) experiments to evaluate
DL-SIC, and compare it with two T-SIC approaches, T-SIC1

and T-SIC2. Our simulation results clearly indicate that DL-
SIC can simultaneously achieve low decoding latency and low
decoding BER. Specifically, DL-SIC reduces decoding latency by
75.41% in the worst-case scenario and 84.44% in the best-case
scenario compared to T-SIC1. Furthermore, with a probability of
approximately 60%, DL-SIC reduces decoding BER from 10−1 to
10−4 compared to T-SIC2. Our OTA experiments further confirm
the feasibility of DL-SIC.

Index Terms—Spectrum sharing, successive interference can-
cellation, deep learning, SIC decoding order.

I. INTRODUCTION

To cope with the growing demand for mobile data and the

limited availability of licensed spectrum, both LTE and 5G

systems have expanded their operations into the unlicensed 5

GHz and 6 GHz bands. A key requirement for such unlicensed

operation is ensuring fair and harmonious coexistence with

other incumbents, particularly Wi-Fi systems. For LTE, 3GPP

standardized the License Assisted Access (LAA) [1], which

employs a Listen-Before-Talk (LBT) mechanism at the MAC

layer to coordinate access to the unlicensed channels. In

Release 16, 3GPP introduced 5G New Radio Unlicensed (NR-

U) [2] for unlicensed operation in the 5 GHz and 6 GHz bands.

With these heterogeneous technologies (i.e., Wi-Fi, LTE-

LAA, 5G NR-U1) sharing the same band, collision avoidance-

based MAC protocols, such as LBT and carrier sense multi-

ple access with collision avoidance (CSMA/CA), are often

adopted. However, these protocols are known to suffer from

1For simplicity, in this paper, we use LAA, LTE, and LTE-LAA, inter-
changeably. The same is true for NR-U, 5G, and NR.

low channel utilization [3]. To improve spectrum utilization,

concurrent transmissions from heterogeneous systems may

be allowed [4]–[7], which requires interference resolution

strategies to mitigate cross-technology interference. Existing

approaches for dealing with interference from heterogeneous

technologies are mainly based on multiple-input multiple-

output (MIMO) [4] and successive interference cancellation

(SIC) [6], [7]. In contrast to a MIMO approach, SIC [7]

does not require a multi-antenna capability; instead, it exploits

the difference in the powers of concurrently received packets

to decode these packets. The fundamental idea behind SIC

is to sequentially decode received signals while iteratively

canceling previously decoded ones.

A. Challenges and Motivation

Traditional SIC (T-SIC) receivers were originally developed

for homogeneous (same-technology) coexistence [8], but later

extended to heterogeneous coexistence of Wi-Fi/ZigBee [6]

and LTE/Wi-Fi [7]. To motivate our work, we first describe

how a T-SIC receiver may be extended to handle heteroge-

neous coexistence of Wi-Fi, LTE, and 5G NR protocols, using

the example in Fig. 1. Depending on the assumed hardware

capability, we consider two possible ways to implement a T-

SIC receiver (other variations may also be envisioned):

(1) T-SIC1: In this approach, cross-technology interference

cancellation is performed after a frame is fully received and
correctly decoded. As a result, in the worst-case, all possi-

ble SIC decoding orders may end up being considered. To

illustrate, consider the situation in Fig. 1. After receiving a

signal at time t1, the T-SIC1 receiver initiates three parallel

detection processes, one per protocol, using auto-correlation

an/or cross-correlation techniques. In this example, the LTE

detector will be triggered first, and an LTE decoding process

will commence right after t1. Even though the three frame

detectors may remain active while the LTE frame is being

decoded, no action will be taken until the completion of this

frame (at time t5 = t1+ 10 msec). If at t5 LTE decoding

is successful (based on the outcome of the CRC), the T-SIC1

receiver will reconstruct the LTE signal and subtract it from the

received composite signal. T-SIC1 will then attempt to decode

the next frame, as identified by one of the three detectors.

In this example, it will be a Wi-Fi signal that starts at t2.

The same process is repeated. Note that additional samples

that are received after t5 need to be stored to facilitate the

decoding of frames that last beyond t5 (as is the case for the



Fig. 1: Example of concurrent and asynchronous transmissions

of Wi-Fi, LTE-LAA, and 5G NR-U. Frames have different

received powers.

5G NR frame in this figure). If the decoding of any given

frame fails, the T-SIC1 will consider a different SIC decoding

order. For instance, if at t5, LTE frame decoding fails (as

indicated by CRC failure), the T-SIC1 receiver will attempt to

decode the Wi-Fi signal first, starting from the samples at t2.

After fully decoding the Wi-Fi frame at t4, if this decoding

is successful, T-SIC1 will subtract the Wi-Fi signal from the

composite and will attempt to decode an LTE frame using

the remaining samples, starting from the samples at t1. The

overall decoding latency for T-SIC1 can be significant due to

its exhaustive nature (more on this in subsequent sections).

(2) T-SIC2: In this approach, frame decoding is initiated

once the signal of any protocol has been detected. As a

result, multiple decoding processes may overlap in time,

regardless of the relative strengths of the constituent signals.

During the decoding of a given frame, decoded “chunks” from

previously initiated decoding processes will be subtracted from

the composite before the decoding of the current frame takes

place, even if such chunks eventually fail the decoding process

in their own respective decoders (at the time the frames are

completely received). To illustrate, consider the situation in

Fig. 1. Three frame detection processes will be simultaneously

executed, one per protocol type. At t1, an LTE signal will be

detected, triggering an LTE decoding process. At t2, a Wi-Fi

signal may be detected by the second detector (in general, the

detection threshold is much lower than the decoding threshold,

so a weak non-decodable Wi-Fi signal may still be detectable).

In contrast to T-SIC1, Wi-Fi frame decoding will commence

at this point, after subtracting a decoded chunk of the LTE

signal that starts at t2. A chunk here corresponds to a small

portion of a frame, such as a subframe (1 msec). Thus, the

decoding of the Wi-Fi frame commences at time t = t2+ the

chunk duration. The process continues until the detection of

the 5G signal at t3. At that point, 5G frame decoding can

commence after subtracting chunks of partially decoded LTE

and Wi-Fi signals. Note that the reconstructed and removed

chunks may end up being inaccurate, but are still likely to

reduce the interference and improve the BER of the decoded

frame. Although this method has low decoding latency, it may

result in a high decoding error rate for the LTE frame if the

received signal strength (RSS) of Wi-Fi and 5G NR are higher

than that of LTE.

Designing a SIC receiver with both low decoding latency

and low decoding error rate is challenging for several reasons:

(1) It is difficult to identify the protocol types for concur-

rently transmitted packets in real-time, given that heteroge-

neous protocols’ transmissions in shared unlicensed bands are

random. T-SIC assumes that the protocol types for concur-

rently transmitted packets are known in advance [6], which is

impractical.

(2) Transmissions from different protocols are uncoordi-

nated and asynchronous. Additionally, the RSS values of het-

erogeneous protocols’ packets are unknown and may change

due to channel fading and mobility, significantly impacting the

real-time decoding order. T-SIC assumes a certain power order

of the received signals [9], [10], which is impractical.

(3) T-SIC1 incurs a large decoding delay to obtain the

SIC decoding order information, whereas T-SIC2 can decode

packets in real-time, it may induce a high decoding error rate.

This inherent trade-off between decoding latency and decoding

error rate in T-SIC stems from not being able to identify the

correct decoding order in real-time.

Therefore, a novel SIC architecture is needed to determine

the SIC decoding order rapidly and efficiently.

B. Contributions

Our main contributions are summarized as follows:

(1) We introduce a novel DL-SIC receiver, which is com-

prised of a protocol detector and a SIC decoding order

classifier. DL-SIC utilizes deep learning techniques to identify

the protocol types and correct decoding order in real-time.

We evaluate the performance of the proposed DL-SIC via

extensive simulations.

(2) We analyze the decoding latency of both DL-SIC and

T-SIC1 in a three-protocol coexistence scenario (Wi-Fi, LTE,

and 5G NR). Simulation results show that DL-SIC reduces

the decoding latency by 75.41% to 84.44%, depending on the

packet detection order and RSS order. Additionally, with a

probability of approximately 60%, DL-SIC reduces decoding

bit error rate from 10−1 to 10−4 compared to T-SIC2.

(3) We validate the performance of DL-SIC using OTA

experiments with USRPs (software-defined radio devices) for

LTE/Wi-Fi spectrum sharing, demonstrating the practical fea-

sibility of DL-SIC.

II. DL-SIC ARCHITECTURE

A. System Model

Without loss of generality, we consider a heterogeneous

coexistence scenario consisting of Wi-Fi, LTE-LAA, and 5G

NR-U operating over the same 5 GHz unlicensed bands.

Concurrent transmissions may occur due to hidden terminal

problems or specific transmission strategies [4], [7]. Further-

more, receivers are capable of SIC decoding [7]. We focus on

downlink transmissions and assume unsaturated traffic. The

received signal at a given receiver is represented by:

y(t) = hWiFi(t)� xWiFi(t) + hLTE(t)� xLTE(t)

+ hNR(t)� xNR(t) + n(t),
(1)
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Fig. 2: Block diagram of DL-SIC, shaded boxes are new

functions introduced by DL-SIC.

where xWiFi(t), xLTE(t), and xNR(t) are the transmitted signals

of Wi-Fi, LTE, and 5G NR, respectively, at time t. The

corresponding channels are denoted by hWiFi(t), hLTE(t), and

hNR(t). n(t) represents the thermal noise and other unac-

counted interference. It is important to note that since the

transmissions of all links are unsaturated, xWiFi(t), xLTE(t),
and xNR(t) may be inactive at certain time t.

B. DL-SIC Design

1) Design Overview: The block diagram of DL-SIC is

given in Fig. 2, which includes a protocol detector and a

SIC decoding order classifier, built on top of a traditional

SIC receiver. Both components are based on deep learning.

Upon sampling the received signal, the DL-SIC receiver feeds

a window of baseband I/Q samples into the protocol detector,

which identifies the protocol type(s) of the constituent signals.

In the case of concurrent transmissions, multiple protocols

will be identified. The output of the protocol detector is then

used to select one of several classifiers, where each classifier

predicts the decoding order of the mixed signals. Finally,

the DL-SIC receiver decodes the mixed signals based on the

predicted decoding order. If only one protocol is detected, the

DL-SIC receiver decodes the signal following traditional SIC

decoding procedures without utilizing the SIC decoding order

classifier.

TABLE I: Layers Configuration of Adopted Neural Networks.

CNN Architecture GRU Architecture
Conv2D, 128 neurons, with Average Pooling GRU, 128 neurons
Conv2D, 128 neurons, with Average Pooling GRU, 128 neurons

Flatten Flatten
Fully-connected, 128 neurons Fully-connected, 128 neurons
Fully-connected, 128 neurons Fully-connected, 128 neurons
Output, Number of Classes Output, Number of Classes

Both the protocol detector and SIC decoding order classifier

can utilize three classic neural network (NN) architectures:

Multi-Layer Perceptron (MLP), Convolutional Neural Net-

work (CNN), and Gated Recurrent Unit (GRU) [11]. Note

that Long Short-Term Memory (LSTM) [11] and GRU are

two commonly used architectures in Recurrent Neural Net-

works (RNNs). Without loss of generality, we adopt GRU in

this paper. The selection of these specific NN architectures

for DL-SIC is underpinned by their representation and their

widespread applicability across domains like image and RF

signal classification, as well as sequential data analysis and

prediction. The layers configuration of adopted NNs are shown

in Table I. To facilitate a meaningful comparison between

Protocol Detector 
(Generate One of  

Eight Possible Labels)

0: Noise Only
1: Wi-Fi Only
2: LTE Only
3: 5G NR Only
4: Wi-Fi + LTE
5: Wi-Fi + 5G NR
6: LTE + 5G NR
7: Wi-Fi + LTE + 5G NR

Labels

Classifier A
Classifier B
Classifier C
Classifier D

SIC Decoding 
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and/or 
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Output 
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Fig. 3: Deep learning-based protocol detector.

MLP and CNN (or GRU) architectures, we replace the two

convolutional (or GRU) layers with two fully connected layers

and adopt 128 neurons in each layer of the MLP architecture.

The DL-SIC receiver is capable of effectively detecting

mixed waveform patterns that change dynamically in the time

domain. Moreover, it can determine the SIC decoding order

of constituent signals in an adaptive manner without requiring

any prior knowledge of their RSS.

2) Protocol Detector: The I/Q samples in each sampling

window vary over time due to the asynchronous transmissions

of various protocols. In our three-protocol scenario, there are

eight possible classes (combinations): Noise only, Wi-Fi only,

LTE only, 5G NR only, Wi-Fi + LTE, Wi-Fi + 5G NR, LTE

+ 5G NR, and Wi-Fi + LTE + 5G NR.

Fig. 3 provides an overview of the protocol detector and its

relationship with other components in DL-SIC. SIC is unnec-

essary if the protocol detector predicts only one technology,

such as Labels 1, 2, and 3 depicted in Fig. 3. However, if

the protocol detector predicts concurrent transmissions (e.g.,

Label 4 to Label 7 in Fig. 3), an SIC decoding order classifier

is further employed to intelligently and swiftly determine the

SIC decoding order for the detected mixed protocols.

3) SIC Decoding Order Classifier: Denoting the number

of signal components for one sampling window as N , we

propose two neural network structures for implementing the

SIC decoding order classifier.

Single Classifier Structure: A single classifier can be

designed to predict the SIC decoding order for the scenario

of N mixed signals. For instance, when N = 3, the number

of all possible SIC decoding orders is 16. It can be shown

that this number grows approximately as O
(

N
ln(N+1)

)N

[12].

Consequently, this approach results in a massive number of

training parameters in one neural network.

Multi-stage Classifiers Structure: To address the complex-

ity of the single classifier structure, we propose a hierarchical

model consisting of multi-stage classifiers. Fig. 4 provides an

example of the multi-stage SIC decoding order classifier for

N = 3, where the decoding order is Wi-Fi → LTE → 5G NR.

In this structure, each stage of the classifier predicts which

signal (Wi-Fi, LTE, or 5G NR) can be successfully decoded,

given the prior decoding information. If the first stage predicts

successful SIC decoding for a given protocol, then another

classifier is used to determine the next signal to be decoded.

This process continues until the SIC decoding order for all

signals is determined, or none of the signals can be decoded
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Fig. 4: An example of the multi-stage SIC decoding order

classifier with N = 3, where the decoding order is Wi-Fi →
LTE → 5G NR.

in any stage of the classifier.

4) Decoding Latency Reduction of DL-SIC: As mentioned

previously, although T-SIC2 decodes all packets in real-time, it

suffers from a high decoding bit error rate (BER) due to a fixed

decoding order. Therefore, this paper focuses on analyzing the

decoding latency of T-SIC1 and DL-SIC, and comparing the

decoding BER of T-SIC2 and DL-SIC in Section III.

Best-Case Scenario for T-SIC1: Low decoding latency of

T-SIC1 is achieved when the packet detection order matches

the successful decoding order. Fig. 5(a) illustrates this sce-

nario, where Packet 1 is the first to arrive and be detected

by T-SIC1 among three packets. The dashed “P” block in the

figure represents packet detection. If RSS1 > RSS2 > RSS3,

Packet 1 can be successfully decoded. Once Packet 1 is

decoded and reconstructed, the T-SIC1 receiver can proceed

with detecting and decoding the remaining packets. Thus, the

decoding latency of Packet 2 under this scenario is:

τ2(T-SIC1) = t1,d + t1,c − a2, (2)

where t1,d represents the delay for decoding Packet 1, while

t1,c represents the delay for reconstructing Packet 1. a2 is the

difference between the arrival time of Packet 2 and Packet 1.

We next analyze the decoding latency of DL-SIC in this

scenario. As shown in Fig. 5(b), DL-SIC detects a weak Packet

2 at t1 and determines the decoding order, which first decodes

Packet 1 and then Packet 2. The resulting decoding latency of

Packet 2 can be expressed as:

τ2(DL-SIC) = tDL +
w

L1
(t1,d + t1,c)− a2, (3)

where tDL is the processing latency of the DL-SIC, including

the testing latency of the protocol detector and the SIC

decoding order classifier. w is the sampling window size. L1

is the packet length of Packet 1. w
L1

t1,d and w
L1

t1,c represent

t′1,d and t′1,c in Fig. 5(b), which are the time needed to decode

and reconstruct Packet 1, respectively, during each sampling

window.

Worst-Case Scenario for T-SIC1: Fig. 6(a) illustrates the

worst-case scenario for T-SIC1, where the packet detection

order is reversed compared to the successful decoding order.

We analyze the decoding latency from the perspective of

Packet 1. Packet 1 is detected first, so the T-SIC1 receiver

proceeds to decode Packet 1 and finds that the decoding is

unsuccessful due to subsequent strong overlapping transmis-

sions (e.g., Packet 2 and Packet 3 start to transmit during

(a) T-SIC1 receiver

(b) DL-SIC

Fig. 5: Best-case scenario for T-SIC1: RSS1 > RSS2 > RSS3.

(a) T-SIC1 receiver

(b) DL-SIC

Fig. 6: Worst-case scenario for T-SIC1: RSS1 < RSS2 <
RSS3.

Packet 1), resulting in a decoding latency of t1,d. The T-SIC1

receiver then attempts to decode the second detected Packet 2,

which is still unsuccessful until it finds that Packet 3 should

be decoded first. Therefore, the decoding latency of Packet 1

in this scenario for T-SIC1 can be obtained by summing up

the latency of all the above and is given by:

τ1(T-SIC1) = 2t1,d + 2t2,d + t2,c + t3,d + t3,c. (4)

The DL-SIC, on the other hand, can quickly detect a

stronger signal at time t1, as illustrated in Fig. 6(b). Conse-

quently, after a latency of tDL, the DL-SIC switches to decode

Packet 2. Similarly, it switches to the updated decoding order

at time t2 + tDL if Packet 3 arrives at t2. Therefore, the

decoding latency of Packet 1 can be expressed as:

τ1(DL-SIC) = 2tDL +
w

L3
(t3,d + t3,c) +

w

L2
(t2,d + t2,c). (5)



III. SIMULATION RESULTS

To train our neural network models in a supervised manner,

we construct labeled datasets by generating Wi-Fi 802.11ac,

LTE, and 5G NR waveforms using MATLAB WLAN, LTE,

and 5G communication toolboxes. All three waveforms have

the same bandwidth of 20 MHz. Each packet is transmitted

with one of the four MCS options: (QPSK, 1/2 rate), (QPSK,

3/4 rate), (16-QAM, 1/2 rate), (16-QAM, 3/4 rate). We

generate 3000 samples for each label, and randomly split

the dataset into 60%, 20%, and 20% for training, validation,

and testing, respectively. We use Keras to build our neural

networks, with a maximum training epoch of 50. In addition,

early stopping (with patience = 5) is applied to prevent

overfitting. We assume that the arrival time of Wi-Fi, LTE,

and 5G NR packets follows a Poisson distribution, while the

wireless channel of each waveform follows a Rayleigh fading

model. We also assume that the three transmitters (Wi-Fi, LTE,

and 5G NR) have the same distance to a common DL-SIC

receiver. Additionally, the transmission power of each packet

for all three protocols is uniformly sampled from a range of [8,

23] dBm [1], [13]. The datasets is available on the website2.

A. Performance of Protocol Detector

Fig. 7(a) shows the impact of different sampling window

sizes (w) on the overall classification accuracy of the protocol

detector. As expected, the classification accuracy increases

as w increases. All three neural networks achieve over 90%

classification accuracy when w is 1024.
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Fig. 7: Classification accuracy and average testing delay for

various DNN protocol detectors.

In addition to the accuracy, we also consider the impact of

the window size on testing delay, which is related to tDL in

Eq. (3). The tests for all three neural networks are conducted

on an Intel CPU i9-10900K. Fig. 7(b) illustrates the average

testing delay for the DNN protocol detector under different w.

As w increases, the required testing time for DNN protocol

detectors also increases. The GRU model takes more time to

test the sample than the other two models when w is less than

or equal to 1000. On the other hand, the CNN model takes the

longest time when w exceeds 1000. Among all three models,

the MLP requires the least testing time under all window sizes.

B. Performance of SIC Decoding Classifier

Fig. 8 illustrates how the window size (w) affects both the

classification accuracy and average testing delay of SIC decod-

2wireless.ece.arizona.edu/software

ing order classifiers implemented with a CNN architecture. As

shown, both classification accuracy and testing delay increase

as w grows. This trade-off between accuracy and processing

delay suggests the importance of the window size selection for

the given application. Additionally, it is worth noting that the

total testing delay of multi-stage SIC decoding order classifiers

is generally higher than that of single classifier structure.
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Fig. 8: Classification accuracy and average testing delay for

SIC decoding order classifiers using CNN architecture.

Fig. 9 illustrates the performance of SIC decoding order

classifier with the single classifier structure using different

neural networks. We can see that CNN outperforms MLP and

GRU in terms of classification accuracy. Moreover, the testing

delay for all three neural networks increases as w increases.
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Fig. 9: Impact of different neural networks on the SIC decod-

ing order classifier with single classifier structure.

C. Performance Comparison of DL-SIC and T-SIC

Fig. 10(a) shows the impact of w on the average decoding

latency of DL-SIC and T-SIC1, based on the analysis presented

in Section II-B4. The total process latency of deep learning

models (tDL) is obtained by summing the delay of protocol

detector and SIC decoding order classifier. The delay for

decoding and reconstructing packets (e.g., t1,d, t1,c of Eq.(2))

is obtained using MATLAB. In the best-case scenario, the

average decoding latency of T-SIC1 is approximately 0.45

seconds, while DL-SIC achieves a decoding latency of 0.07

seconds when w equals 1024. In the worst-case scenario,

T-SIC1 and DL-SIC achieve decoding latency of approxi-

mately 0.61 seconds and 0.15 seconds, respectively.

In Fig. 10(b), we compare the decoding bit error rate (BER)

of DL-SIC and T-SIC2. We observe that DL-SIC achieves

significantly lower BER values for all three protocols, as

compared to T-SIC2. This is because T-SIC2 cannot obtain

the received signal strength (RSS) order information merely

by relying on auto-correlations or cross-correlations in T-

SIC receivers. It can be observed that with a probability
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of approximately 60%, DL-SIC reduces decoding BER from

10−1 to 10−4 compared to T-SIC2.

As mentioned in Section I, there is an inherent trade-off

between decoding latency and decoding BER in traditional

SIC receivers. Fig. 10 indicates that DL-SIC solves this trade-

off and simultaneously achieves low decoding latency and low

decoding BER.

IV. EXPERIMENTAL RESULTS

To evaluate the practicality of DL-SIC, we conduct over-

the-air (OTA) experiments using a wireless testbed that is

comprised of three National Instruments (NI) USRP 2921

devices: an LTE transmitter, a Wi-Fi transmitter, and a DL-

SIC receiver (see Fig. 11). We generate Wi-Fi 802.11ac

and LTE waveforms using MATLAB toolboxes, as in the

simulations. The generated waveforms are then upconverted

to a RF channel in the unlicensed band.

We first study the performance of the protocol detector

when trained and tested based on the experimental dataset

using CNN and w = 128. The confusion matrix is shown

in Fig. 12. Overall, the protocol detector achieves an average

classification accuracy above 78% for all labels.

Next, we evaluate the performance of SIC decoding order

classifier. There are five possible labels for the LTE/Wi-

Fi coexistence scenario: (1) Signal Undecodable, (2) LTE

Decodable Only, (3) LTE → Wi-Fi (LTE and Wi-Fi are both

decodable with the specified order), (4) Wi-Fi Decodable Only,

and (5) Wi-Fi → LTE. Fig. 13 shows the confusion matrix

of the SIC decoding order classifier with single classifier

structure, which accurately predicts all labels with an overall

classification accuracy of 88.7%. These results using exper-

imental data demonstrate the practical effectiveness of the

proposed DL-SIC classifiers.

Fig. 12: Confusion matrix of protocol detector, trained and

tested with the experimental dataset using CNN and w = 128.

Fig. 13: Confusion matrix of SIC decoding order classifier

with single classifier structure, trained and tested with the

experimental dataset using CNN and w = 128.

V. RELATED WORK

A. Interference Cancellation Techniques

Existing techniques for interference cancellation (IC) be-

long to two main categories: Multiple-Input Multiple-Output

(MIMO) and Successive Interference Cancellation (SIC).

Gollakota et al. [14] proposed TIMO, a MIMO-based cross-

technology IC technique. It enables an 802.11 receiver to

successfully decode Wi-Fi signals even in the presence of

interference signals from other technologies by only measuring

the interference channel ratio. Yun et al. [4] proposed a

MIMO-based receiver that enables decoding of concurrent

transmissions of LTE and Wi-Fi signals. Their method em-

ploys iterative channel estimation for both LTE and WiFi

channels, utilizing the fact there are a small set of LTE

channels in the frequency domain that are not interfered by

Wi-Fi. Yang et al. [15] introduced ZIMO, enabling harmonious

coexistence of ZigBee and Wi-Fi networks.

On SIC, Guo et al. [7] adopted SIC to alleviate the cross-

technology interference caused by concurrent transmissions of

LTE and Wi-Fi within unlicensed bands. Yan et al. [6] imple-



mented a single-antenna SIC receiver for Zigbee/Wi-Fi coexis-

tence. Their scheme effectively mitigates the interference from

a stronger Wi-Fi signal, thereby facilitating the subsequent

decoding of the weaker ZigBee signal. Halperin et al. [8] im-

plemented a SIC receiver to decode simultaneous overlapping

transmissions from multiple asynchronous sources. However,

these works generally assume prior knowledge of the protocol

types for concurrently transmitting packets, or assume the RSS

order is known a priori (e.g., the power of Wi-Fi is always

stronger than ZigBee).

B. Signal Detection and Classification

Other works focused on detecting the type of interfering

technology or modulation scheme [16]–[20]. Hong et al. [16]

introduced a framework called DOF, which can accurately

detect coexisting radios in the shared spectrum. The authors

in [17], [18] proposed deep learning methods for modula-

tion classification. Zha et al. [19] investigated deep learning

approaches for both multi-signal detection and modulation

classification. The authors in [20] used deep neural networks

to detect coexisting signal types based on In-phase/Quadrature

(I/Q) samples without decoding them. A common idea un-

derlying these works is that they extract distinctive features

from diverse radios for signal detection. However, the above

techniques require a significant amount of time to detect

signal types, which is not applicable to real-time interference

cancellation.

C. Existing Deep Learning-aided SIC Solutions

Some recent works enhanced PHY-layer SIC decoding

performance using deep learning techniques. To solve the

practical issue that SIC is imperfect in non-orthogonal multiple

access (NOMA) systems, authors in [21], [22] proposed a

novel approach to approximate SIC decoding functions, such

as signal decoding and reconstruction, via deep neural net-

works. Motivated by the fact that the acquired channel state

information (CSI) by the receivers may be inaccurate, the

authors in [9], [10] introduced a deep learning-aided SIC,

which replaced the interference cancellation blocks of SIC

by deep neural networks. However, all the aforementioned

works consider homogeneous wireless technologies (where

there is only one type of signal), and they assume the SIC

decoding order is given or known, which are not applicable

to heterogeneous network coexistence.

VI. CONCLUSIONS AND FUTURE WORK

SIC has shown great potential in improving spectrum uti-

lization of cross-technology coexistence, utilizing the power

differences of concurrently transmitted signals. In this work,

we proposed DL-SIC, a deep learning-aided SIC approach.

The simulation results demonstrate that DL-SIC achieves

low decoding latency and low decoding BER simultaneously.

Extensive simulations and OTA experiments validate the ef-

fectiveness and practical feasibility of DL-SIC.

As future work, we will consider multi-links for each

protocol to generalize the proposed DL-SIC architecture.
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