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Abstract—In this paper, we are interested in cognitive radio
networks (CRNs) whose operation does not rely on channel
sensing. A spectrum server is responsible for collecting spectrum
availability and location information from primary radio networks
(PRNs), and broadcasting this information to cognitive radios. By
subscribing to this broadcast, a CR knows about the spectrum op-
portunities without sensing channels. Spectrum opportunity under
this paradigm presents a multi-level structure that generalizes the
well-known channel-sensing-based binary structure. This multi-
level structure reflects a microscopic spectrum opportunity for
CRs, and can be exploited to increase the CRN throughput. Under
this structure, we study efficient spectrum access in a multi-CR
environment, with the objective of maximizing the network-wide
utilization of spectrum opportunity. The difficulty of our problem
comes from the fact that different CRs may decide the same
channel to be available, but at different levels. Therefore, channel
access needs to be carefully coordinated. Both centralized and
distributed solutions are provided, supporting different modes of
operation. Numerical results verify the accuracy of our algorithms
and the significant gain achieved by the multi-level framework.

I. INTRODUCTION

Cognitive radios (CRs) have been proposed as an enabling
technology for opportunistic spectrum access (OSA). These
radios are capable of identifying idle frequency bands (channels)
and dynamically hoping between them to avoid interfering with
the licensed users of the channel (a.k.a., primary radios (PRs)).
To guarantee an interference-free reuse of the spectrum, channel
sensing has long been considered as an indispensable compo-
nent in the realization of CRs. For example, the IEEE 802.22
WRAN, the first standard for cognitive radio networks (CRNs),
relies on distributed channel sensing to identify transmission
opportunities.

In this paper, we are interested in a fundamentally different
paradigm for utilizing unused spectrum. Specifically, we con-
sider CRNs whose operation does not rely on channel sensing.
We consider a spectrum-leasing scenario, where a CRN shares
the spectrum with an infrastructure-based PRN, such as a
cellular IS-95 or 802.16 WiMax system (see Figure 1). The
PRN consists of multiple static base stations (BSs) that are
interconnected via a broadband wired network, and member
mobile stations (MSs, not shown in the figure) that communicate
through wireless links with one of these BSs. We assume
that each BS covers a certain area (i.e., a cell) and has the
location information of itself and its member MSs. The BS
periodically reports the spectrum utilization status of its cell,
i.e., the instantaneous channel allocation among member MSs,
as well as their location information, to a spectrum server via
the wired network. The location of PR stations and the collected
spectrum-status information are broadcasted by the server. By
subscribing to this broadcast, a CR knows about the spectrum
opportunities it can use without conducting channel sensing.
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Fig. 1. Spectrum leasing: (a) System structure, (b) Timing of the broadcast
of channel-status information from the spectrum server.

In contrast to the conventional channel-sensing-based
paradigm, which assumes that the PRN is ambivalent to the
existence of the CRN and no information exchange takes place
between the two, the new paradigm assumes that the PRN col-
laborates with the CRN in identifying spectrum opportunities.
This collaboration can be justified by economic considerations,
where a PRN opens its spectrum to secondary reuse for a profit.
The subscription component in the new paradigm is extremely
suitable for implementing fee-based services, and thus provides
a good incentive for the PRN to collaborate. This paradigm is
also motivated by the following practical considerations: First,
many existing PRNs are infrastructure based, and follow the
architecture depicted in Figure 1. Location information of nodes
are readily available in these systems [14]. Some location-
oriented applications are actually utilizing such information.
Second, as will be clear shortly, significant throughput gains
can be achieved under this paradigm over conventional channel-
sensing-based CRN systems. Third, low hardware complexity
(and cost) is required at the CRs, because the sensing function-
ality can now be removed from it.

The subscription-based paradigm described in Figure 1 is in
line with the CRN operational model recently advocated by the
FCC [4], which calls for establishing a database that CR systems
must first register with. This database provides a registered CR
spectrum and geo-location information of PRs, and assists the
CR in identifying spectrum opportunities. Note that the idea
of a database-assisted method is still in its conceptual form.
Quantitative knowledge of the benefit of this idea still needs
to be realized, and its implementation details are yet to be
developed.

Spectrum opportunity in the above framework presents a
unique structure. Specifically, for each CR and each channel,
we adopt a power mask to describe the maximum transmission
power the CR can use without causing unacceptable interfer-
ence to neighboring PRs. Due to the availability of the PR
location information, this power mask is multi-leveled. For



a

b


c
d

CR


1
CR
2


a

b


c
d
 CR

1

CR
2


a

b


c
d

CR


1
 CR
2


(a) Level 1
 (b) Level 2
 (c) Level 3


PR node

CR node


Fig. 2. Example of the multi-level spectrum opportunity (circles denote various
interference ranges).

example, consider the scenario in Figure 2, where two PR
links (a → b and c → d) and one CR link (CR1 → CR2)
operate in the same vicinity and share the same frequency
channel. CR1 can transmit as long as its received power at the
closest active PR receiver is smaller than the PR’s interference
tolerance, which is typically small and known. So depending
on the status (ON/OFF) of the PR links, CR1’s power mask
takes one of three levels: PR’s interference tolerance

h1b
(Level 1),

PR’s interference tolerance
h1d

(Level 2), and Pmax (Level 3, the
full power supported by the CR’s battery), where hij is the
channel gain between nodes i and j. Note that this multi-level
structure is a generalization of the well-known binary structure,
which uses channel sensing to identify spectrum opportunities
and implements a binary power mask (0 if neighboring PR is
active and Pmax if none of them is active).

In this paper, we study the spectrum access problem in a CRN
under the multi-level spectrum opportunity setup. Compared
with the binary opportunity structure, we realize that this multi-
level structure reflects microscopic spatial opportunity for CRs,
and can be exploited to increase the CRN throughput. The diffi-
culty of our problem comes from the fact that different CRs may
consider the same channel to be available, but at different levels.
Therefore, channel access needs to be carefully coordinated
between these CRs to avoid collisions, and more importantly,
ensure efficient utilization of the spectrum opportunity from a
network-wide standpoint.

We formulate the coordinated channel access problem as a
a joint power/rate control and channel assignment optimization
problem. Different from previous works that investigated the
problem mainly from a high-level mathematical viewpoint, our
solutions are tailored to support two operational modes for CR
systems, as specified by the FCC report [4]: (1) Centralized
coordination (CC), and (2) distributed coordination (DC). In
the CC mode, the spectrum server acts like a central controller.
It not only collects spectrum and location information from the
PRN, but also computes the transmission parameters, including
transmission power, rate, and channel allocation, for each CR.
As a result, no computation is required by the CR. For the DC
mode, the spectrum server acts as a raw-information distributor;
it only broadcasts PR locations and spectrum utilization infor-
mation. Coordination among CRs is conducted in a distributed
way, based on local computations of individual CRs. Because
the CC mode provides better performance and DC mode pro-
vides better implementability for large-scale systems, we are
interested in both.

The contributions of this paper are as follows. First, we show
that the joint power/rate control and channel assignment prob-
lem can be formulated as an NP-hard mixed integer nonlinear
programming (MINLP) problem. By exploiting the discrete set
of rates supported by the CR on each channel, we transform
this MINLP to a binary linear programming (BLP) problem

that only contains binary variables and linear objective function
and constraints. This transformation applies to any arbitrarily
given rate-SINR relationship. We then develop two polynomial-
time approximate algorithms for the BLP. The first one is the
centralized LPSF algorithm. It is based on iteratively solving a
series of linear programming problems and sequentially fixing
the variables to either 1 or 0 in each iteration. The second
is the distributed EF-based algorithm. This algorithm involves
iterative and on-line adjustment of the power/rate of each CR
over each channel based on some economic factor that accounts
for the efficiency of investing power on a given channel. We
show that this distributed algorithm is provably efficient, i.e.,
it can achieve a provable fraction of the optimal performance.
Simulation results show that the actual performance gap is less
than 10% in all simulated realizations. Our numerical results
show that significant throughput gain (e.g., over 100% at best)
can be achieved under the multi-level spectrum opportunity
structure after accounting for the overhead of broadcast and
subscription.

The rest of this paper is organized as follows. We review
the related work in Section II. We describe the models and
formulate the optimization problem in Section III. The BLP
transformation, and the LPSF and EF algorithms are presented
in Section IV. We describe the computation of power mask in
Section V. Simulation results and discussion are provided in
Section VI, and we conclude the work in Section VII.

II. RELATED WORK

Much of the related work is based on the binary-type spec-
trum opportunity. Early works provide collision-free channel
assignment for CR nodes given a set of available channels at
each node. This problem can be described as an interference-
graph vertex-coloring problem [15], [23]. To obtain a fast
solution, various distributed approximations were proposed,
which are based on observing local interference patterns [22],
local bargaining [1], or on coordinations between CR nodes
that aim at maximizing some system utility [2][19]. Because
of the graph-theoretic nature of these algorithms, they take
transmission power as input rather than output, and thus are
not applicable to power/rate control problems.

The second body of work considers the sensing/channel
access decision-making process from a single CR’s view-
point. This is also termed as MAC-layer sensing. Existing
works include the partially observable Markov decision pro-
cess (POMDP) model [21], the constrained Markov decision
processes (CMDPs) model [20], and the optimal stopping-
rule models [3] [7]. Assuming a semi-Markov process for
the PR traffic, Kim and Shin [8] proposed a sensing-period
adaptation algorithm that maximizes the discovery of spectrum
opportunities and minimizes the delay in finding an available
channel. Based on a similar PR traffic model, the authors in [6]
studied a dynamic access scheme subject to a constraint on the
CR-to-PR violation rate, but only for a system of one PRN and
one CR link. The coordinated use of spectrum opportunities
at neighboring CRs has not been considered in these works,
and collisions between CR transmissions are resolved using
standard CSMA/CA techniques. Such treatment leads to non-
optimal performance from a network’s viewpoint.

The third type of work simplifies the problem by restricting
the treatment to CR nodes only. So the CR-to-PR and PR-to-CR



interferences do not appear in their formulation. Within this cat-
egory, Hou et al. [5] considered the joint optimization of spec-
trum, scheduling, and routing in a multi-hop software-defined-
radio (SDR) network. Yi and Hou studied the joint optimization
of power control, scheduling, and routing for a multi-hop SDR
network in [10] (for a centralized algorithm) and [11] (for a
distributed algorithm). Yuan et al. [18] introduced the concept
of time-spectrum blocks to study spectrum allocation in CRNs.
Based on a continuous-time Markov model, Xing et al. [16]
proposed a random access protocol that achieves airtime fairness
among CRs. The work in [17] considers spectrum access for
CRs under an interference temperature constraint. However,
because this constraint is defined only at a single location,
compliance to it does not necessarily prevent interference on
PR nodes.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed (ad hoc) CRN that coexists with
M legacy (fixed spectrum) infrastructured PRNs over a finite
area. PRN m, m = 1, . . . , M , is licensed to operate over its
own frequency channel of bandwidth Bm. In reality, a PRN
may occupy more than one frequency channel. Such a network
can be easily captured in our model by using multiple (virtual)
PRNs that operate over different channels.

Let the number of CR links in the system be N . A CR
link refers to a pair of CR sender and a CR receiver. For
CR link i, we denote the sender and the receiver by S(i)
and D(i), respectively. A CR link can transmit over multiple
non-contiguous channels simultaneously. Let the transmission
power on channel m be P

(m)
i . To avoid unacceptable CR-to-

PR interference, this transmission power must be constrained
below certain power mask P̂

(m)
i . The value of P̂

(m)
i is related

to the status of neighboring PRs and thus changes over time.
For now, we assume that the value of P̂

(m)
i s, i = 1, . . . , N and

m = 1, . . . ,M , are given in each snapshot as input parameters
of the joint power/rate control and channel assignment problem.
We consider the calculation of P̂

(m)
i in Section V.

We stick to the protocol model for the collisions between
CRs. We say that CR links i and j are interfering links on chan-
nel m if P̂

(m)
i hS(i)D(j) > PI,CR or P̂

(m)
j hS(j)D(i) > PI,CR,

where hS(i)D(j) and hS(j)D(i) are the cross-link channel gains
of the two links, and PI,CR is a small fixed value, denoting
the sensitivity of the CR receiver. Any received power below
PI,CR can be deemed as ignorable in terms of interference. We
assume that an exclusive channel occupancy policy is used to
resolve collision between CRs: For any two interfering CR links
on channel m, only one of them can access the channel at any
given time.

Treating interference as noise, the rate of CR link i on channel
m is given by

R
(m)
i = Bmf


 P

(m)
i h

(m)
i

q
(m)
D(i) + N0


 (1)

where f is any arbitrary rate-SINR function decided by the
PHY-layer implementation, h

(m)
i is the channel gain of link i

on channel m, q
(m)
D(i) is the received interference over channel m

at D(i), and N0 is the AWGN. Because an exclusive channel
occupancy policy is used, the interference q

(m)
D(i) only comes

from active co-channel PRs and can be measured by the CR
receiver D(i) on line.

For i = 1, . . . , N and m = 1, . . . ,M , define variables

x
(m)
i

def=
{

1, if channel m is used by CR link i, i.e., R
(m)
i > 0

0, otherwise
(2)

Our objective is to maximize the sum of rate of all CR links
over all channels in current snapshot, i.e.,

maximize
N∑

i=1

M∑
m=1

x
(m)
i R

(m)
i (3)

where the maximization is to be carried out with respect to
x

(m)
i ’s and R

(m)
i ’s.

A CR link i should satisfy the following constraints:
C1: CR-to-PR constraint: The transmission power of link i

on channel m should not exceed the power mask P̂
(m)
i . From

(1), this constraint can be written in terms of R
(m)
i as

1

h
(m)
i

(q(m)
D(i) + N0)f−1(r(m)

i ) ≤ P̂
(m)
i , m = 1, . . . , M (4)

where f−1 is the inverse function of f , and r
(m)
i = R

(m)
i

Bm
is the

spectrum efficiency of link i on channel m.
C2: Power supply constraint: The sum of the transmission
powers over all channels should not exceed the maximum power
provided by the battery, i.e.,

M∑
m=1

1

h
(m)
i

(q
(m)

D(i) + N0)f
−1(r

(m)
i ) ≤ Pmax,i. (5)

C3: CR-to-CR collision constraint: If channel m is being used
by CR link i, then it cannot be used by another CR link that
interferes with link i on channel m, and vice versa:

x
(m)
i + x

(m)
j ≤ 1, ∀j ∈ I

(m)
i (6)

where I
(m)
i =

{
j : j 6= i, P̂

(m)
i h

(m)
S(i)D(j) > PI,CR

}
∪{

j : j 6= i, P̂
(m)
j h

(m)
S(j)D(i) > PI,CR

}
is the set of interfering

CR links of link i on channel m.
C1 to C3 are the basic constraints that apply to all CRNs.

Additional constraints may exist depending on the CR’s PHY-
layer implementation. For simplicity, we only include C1 to C3
to our formulation at this point. We will discuss other constraints
in Section IV-D.

IV. SOLUTIONS

A. Transformation to BLP
An observation of the objective function (3) and the con-

straints C1-C3 shows that this formulation constitutes a mixed
integer nonlinear programming (MINLP) problem. The solution
to such a problem is NP-hard, in general. To make this formu-
lation more amenable for further processing, we exploit the fact
that actual communication systems only support a finite set of
discrete transmission rates on each channel. Denote this set of
rates by U = {0, u1, u2, . . . , uK} (in b/s/Hz), where 0 < u1 <

. . . < uK . Define γk
def= f−1(uk) for k = 1, . . . ,K; γk is the

received symbol energy to interference plus noise density ratio
(ES/I0) required to support the kth rate under the power-rate
relationship defined by (1). Let C

(m)
i

def= 1

h
(m)
i

(
q
(m)
D(i) + N0

)
for

i = 1, . . . , N and m = 1, . . . , M . C
(m)
i is a known quantity for



each CR link on each channel. We further define a new variable
y
(m)
k,i for all k = 1, . . . , K, i = 1, . . . , N , and m = 1, . . . , M :

y
(m)
k,i

def
=

{
1, if link i is transmitting on channel m using rate uk

0, otherwise.
(7)

In addition, we add the following constraint on y
(m)
k,i :

K∑

k=1

y
(m)
k,i ≤ 1. (8)

which accounts for the fact that a link can use at most one
rate on a given channel at a time. It is easy to show that the
following relation holds:

x
(m)
i =

K∑

k=1

y
(m)
k,i . (9)

Similarly, we can rewrite the spectrum efficiency r
(m)
i in terms

of y
(m)
k,i and uk:

r
(m)
i =

K∑

k=1

uky
(m)
k,i . (10)

Substituting (9) and (10) into (3) through (6), we get the fol-
lowing equivalent formulation to the original MINLP problem:

maximize
∑N

i=1

∑M
m=1

∑K
k=1 Bmuky

(m)
k,i

such that
C̃1 : C

(m)
i

∑K
k=1 γky

(m)
k,i ≤ P̂

(m)
i

C̃2 :
∑m

m=1 C
(m)
i

∑K
k=1 γky

(m)
k,i ≤ Pmax,i

C̃3 :
∑K

k=1 y
(m)
k,i +

∑K
k=1 y

(m)
k,j ≤ 1, ∀j ∈ I

(m)
i

(11)
where the maximization is w.r.t. the y

(m)
k,i ’s.

An examination of (11) shows that the former MINLP
problem has been transformed into a binary linear program
(BLP) that contains only binary variables and linear objective
function and constraints. A nice property of (11) is that the rate
levels uk, k = 1, . . . ,K, and the corresponding γk’s are fed
into the BLP formulation as tuples (uk, γk). In other words,
the BLP formulation does not rely on the specific functional
relationship between uk and γk, and thus can accommodate
any arbitrary rate-power relation (e.g., a staircase-like function
that characterizes practical multi-rate systems).

B. LPSF Centralized Algorithm
A BLP is a combinatorial problem. Its solution, in general,

is NP-hard. A typical algorithm to approximately solve this
problem is the so-called branch-and-bound algorithm, whose
worst-case time complexity is exponential.

Instead of employing a branch-and-bound algorithm, we
develop polynomial-time approximate algorithms by exploiting
the special structure of the problem. An observation of (11)
indicates that if we relax y

(m)
k,i ’s from their binary values and

allow them to take real values between 0 and 1, then the
formulation becomes a linear program (LP) that is solvable in
polynomial time. In addition, the constraint C̃3 dictates that if
for some m, k, and i, y

(m)
k,i = 1, then y

(m)
h,i = 0 for all h 6= k

and y
(m)
l,j = 0 for all j ∈ I

(m)
i and 1 ≤ l ≤ K. In other words,

a strong dependence exists between the y
(m)
k,i ’s that belong to

the same interfering CR link set. The main idea behind our fast
approximate solution is to fix the values of y

(m)
k,i ’s sequentially

through solving a series of relaxed LP problems, with at least
one y

(m)
k,i finalized to a binary value at each iteration.

Our approximation algorithm, called LP with sequential fix-
ing (LPSF), is described in Table I. In the first iteration, we
append the constraint 0 ≤ y

(m)
k,i ≤ 1 to (11) and relax all

y
(m)
k,i ’s to real values between 0 and 1. We refer to the resulting

formulation as LP(1), which must have a feasible solution
according to Lemma 1. The solution to LP(1) is an upper bound
on the optimal solution to (11), because the feasibility region of
the BLP is a subset of that of LP(1). However, the solution of
LP(1) is, in general, not a feasible solution to the original BLP
problem, because the y

(m)
k,i ’s can now take values between 0 and

1. Among all y
(m)
k,i ’s, we pick the one that has the largest value,

and we denote this y
(m)
k,i by Y

(m)
k,i for ease of identification. We

set Y
(m)
k,i = 1. Accordingly, all y

(m)
h,i ’s for h 6= k and all y

(m)
l,j ’s

for j ∈ I
(m)
i and 1 ≤ l ≤ K must now be set to 0. Substituting

these y
(m)
k,i ’s with their fixed values into the LP(1), we get a

new LP, called LP(2), whose variables do not include those that
have been fixed after the execution of LP(1) (such variables
have been replaced by their binary values). A feasibility check
is then conducted on LP(2). If the feasible region of LP(2) is
empty, that means the first fixing in this iteration, i.e., Y

(m)
k,i = 1,

is not correct. So we reset Y
(m)
k,i to 0. This change means all

those variables that belong to the same interfering CR link set
as Y

(m)
k,i and whose values have been fixed to 0 in this iteration

must now become variables. The revised fix, i.e. Y
(m)
k,i = 0, is

then substituted into LP(1), giving rise to LP(3). LP(3) must be
feasible (see Lemma 2). In a nutshell, at this point we either
have a feasible LP(2) or have a feasible LP(3). In either case,
the new feasible formulation is renamed as LP(1) and a new
iteration starts following the same process above. The process
is repeated until all y

(m)
k,i ’s are set to either 0 or 1. The final rate

allocation of each link on each channel is calculated according
to (10).

STEP 0: Get LP(1) by appending 0 ≤ y
(m)
k,i ≤ 1 to (11) and relaxing

all variables to real values.
STEP 1: Solve LP(1).
STEP 2: Pick Y

(m)
k,i ⇐ max

{
yn

l,j , l ∈ (1, . . . , K), j ∈ (1, . . . , N),

n ∈ (1, . . . , M)}.
STEP 3: Get LP(2) by substituting Y

(m)
k,i = 1, y

(m)
h,i = 0 for h 6= k

and y
(m)
l,j = 0 for ∀j ∈ Ii and 1 ≤ l ≤ K into LP(1).

STEP 4: If LP(2) is feasible
LP(1) ⇐ LP(2)

else
Get LP(3) by substituting Y

(m)
k,i = 0 into LP(1).

LP(1) ⇐ LP(3)

End-if
STEP 5: If all variables are fixed, then Terminate;

otherwise go to STEP 1.

TABLE I
LPSF ALGORITHM.

Theorem 1: The LPSF algorithm can correctly determine the
binary values of all y

(m)
k,i ’s in no more than NMK iterations.

The proof of Theorem 1 is based on the following lemmas.
Lemma 1: In the first iteration, LP(1) has an optimal solution.

Proof: It is easy to show that at least y
(m)
ki = 0 for all

k = 1, . . . ,K, i = 1, . . . , N , and m = 1, . . . , M , is a feasible
solution to the original BLP. Thus it is also a feasible solution
to LP(1). Note that all variables are bounded between [0, 1],



therefore Lemma 1 holds.
Lemma 2: In the first iteration, LP(3) has an optimal solution.

Proof: According to Lemma 1, LP(1) in the first iteration must
have optimal solution, therefore Y

(m)
ki ≥ 0 must holds before the

fix. When Y
(m)
ki is fixed to 0 to get LP(3), its value is changed

from no less than 0 to 0, leading to a non-increase in the
required transmission power. So no R.H.S. of C1’ through C3’
could be violated by this non-increasing action on the L.H.S.
of C1’ through C3’. Therefore LP(3) must have at least one
feasible solution. Noting that all variables are bounded between
[0, 1], Lemma 2 holds.
Lemma 3: LP(1) and LP(3) have optimal solutions in all
iterations.

Proof: The situation in the first iteration is proved by Lemma
1 and Lemma 2. In the second iteration, LP(1) comes from either
a feasible LP(2) or a feasible LP(3) of the first iteration. So LP(1)

must be feasible in the second iteration. Given LP(1) is feasible
in the second iteration, the rational used in proving Lemma 2
also applies here to prove the feasibility of LP(3) in the second
iteration. This induction repeats itself in all iterations. Noting
that all variables are bounded between [0, 1], Lemma 3 holds.

The proof of Theorem 1 is straightforward: Iteratively ap-
plying Lemmas 1 to 3, it is guaranteed that in each iteration
at least one y

(m)
ki is fixed to either 0 or 1 and a new feasible

LP(1) is generated for the next iteration. For the last iteration, if
fixing y

(m)
ki to 1 does not lead to a feasible BLP solution, then

changing its value to 0 must lead to a feasible BLP solution
(due to the same reason as in the proof of Lemma 2).

Based on Theorem 1, it is easy to show that the time complex-
ity of the LPSF algorithm is bounded by the complexity of the
LP solver times NMK. Because a LP solver has polynomial
complexity, the complexity of the LPSF is also polynomial.
In addition, the performance gap between the approximate
solution and the actual optimum can be explicitly evaluated
by comparing against the upper bound of the optimal solution,
which is the the solution to LP(1) in the first iteration. Lemma
1 has guaranteed the existence of this upper bound. We will
shortly show by simulation that this gap is very small (below
10%), and in most cases it is zero.

C. Distributed Algorithm
In this section, we develop a provably efficient distributed

algorithm for the BLP problem (11), which can achieve a
provable fraction of the optimal performance. The intuition
behind such an algorithm stems from understanding the conflicts
between CRs in utilizing spectrum opportunities. There are two
main reasons for such conflicts. First, neighboring CRs may
observe a similar level of spectrum availability over a given
channel, and thus may attempt to transmit simultaneously over
the same channel, causing collisions. Second, transmissions by
the same CR over different channels may also conflict with
each other, in the sense that the maximum transmission power
provided by the battery may not be sufficient to support parallel
transmissions over all these channels. In a nutshell, conflicts
between transmissions occur due to their competition for both
frequency and power resources. A good design philosophy is
to give priority to a transmission that can contribute higher
rate at a lower power. Following this philosophy, the proposed
distributed algorithm defines an economic factor (EF) for each
channel at each CR link. Let the current rate level of link i on

channel m be r
(m)
i = uk, where k = 0, . . . ,K − 1. Then, the

EF of this channel is defined as

η
(m)
i

def=
∆P

(m)
i

Bm∆r
(m)
i

=
C

(m)
i (γk+1 − γk)

Bm(uk+1 − uk)
. (12)

We define η
(m)
i

def= +∞ for r
(m)
i = uK .

/* CR link i */
Initialization: r

(m)
i ⇐ 0, for m = 1, . . . , M and C ⇐ {1, . . . , M}

while (C6= ∅ )
/* Internal candidate selection */
violation flag ⇐ 1
while (violation flag == 1)

m∗ ⇐ arg min
{

η
(m)
i |m ∈ C

}

calculate ∆P
(m∗)
i

if ((∆P
(m∗)
i + P

(m∗)
i ≤ P̂

(m∗)
i )

or (∆P
(m∗)
i +

∑M
m=1 P

(m)
i ≤ Pmax,i))

violation flag ⇐ 0
else
C ⇐ C−{m∗}

end-if
end-while

/* Inter-link selection */
exchange with neighbors the message (link id i‖channel id m∗ ‖ η

(m∗)
i )

if (ηm∗
i is the minimum among neighbors)

increase r
(m∗)
i from uk to uk+1

if (r(m∗)
i == uK )
C ⇐ C−{m∗}

end-if
send rate-adjustment message

end-if

/* Collision elimination routine */
if (a rate-adjustment message is received from link j)

calculate hS(j)D(i) based on received signal strength

if (hS(j)D(i)P̂
(m∗)
j > PI,CR)

if (r(m∗)
i ≤ r

(m∗)
j )

r
(m∗)
i ⇐ 0 and C ⇐ C−{m}

else
S(i) sends a rate-adjustment message

end-if
end-if

end-if
end-while
Output: r

(m)
i , for m = 1, . . . , M

TABLE II
PSEUDO-CODE FOR THE EF-BASED DISTRIBUTED ALGORITHM.

The basic idea of our EF-based distributed algorithm is to
iteratively ramp up the rate level over each channel of every
neighboring link until the power mask and maximum-power
constraints are violated. In each iteration, the link-channel
pair that has the smallest EF value among its interfering-
link set is raised to the next higher rate. This is achieved by
sequentially executing the following three procedures in each
iteration (note that this algorithm is executed in parallel at
various CR transmitters). The first procedure is an internal
candidate selection process, where a link, say i, selects a
channel m∗ that has the smallest EF among all channels in a
candidate channel set C. The set C is initialized to contain all M
channels. The selected channel m∗ is tested for the feasibility
of a rate increase: This is done by calculating the increment
of transmission power ∆P

(m∗)
i = C

(m∗)
i (γk+1 − γk). If this

transmission power increment violates the power mask or the
battery power constraint, then a rate increase on channel m∗ is



infeasible for the CR. So m∗ will be deleted from C and the
above selection process is repeated. Eventually, either a feasible
m∗ will be selected or C becomes empty. When C becomes
empty, the iterative process at the CR transmitter terminates. In
case a feasible m∗ is found, the algorithm enters the inter-link
selection phase.

In the inter-link selection phase, neighboring CR transmitters
exchange the results of their internal selection to elect the link-
channel pair that has the smallest EF among the neighborhood.
The internal selection result of a link i is broadcasted in the
following format (link id i‖channel id m∗ ‖ η

(m∗)
i ), where ‖

means concatenation. The link-channel pair that has the smallest
EF in its neighborhood raises the corresponding rate by one
level, i.e., from uk to uk+1. At the same time, the sender of
this link, say S(j), will broadcast in full power Pmax,j the
following rate-adjustment message to its neighbors: (link id j

‖ channel id m∗ ‖ r
(m∗)
j ‖ P̂

(m∗)
j ‖ Pmax,j).

Whenever a CR link i receives a rate-adjustment message
from link j, it performs a collision elimination routine. In
particular, the receiver of the ith link, D(i), will calculate the
path loss from S(j) (the sender of the message) to D(i) based
on the received signal strength of the message. Based on the
power mask information in the message, D(i) can then decide
whether S(j)’s transmission will interfere with the reception at
D(i) on channel m. If so, D(i) will compare r

(m∗)
i with r

(m∗)
j .

If r
(m∗)
i ≤ r

(m∗)
j , then D(i) notifies S(i) to set r

(m∗)
i to zero

and delete m∗ from C. If r
(m∗)
i > r

(m∗)
j , then D(i) notifies S(i)

to send a rate-adjustment message to trigger link j to eliminate
channel m∗ from its usage.

A pseudo-code description of the algorithm is given in
Table II. Because at least one r

(m)
i will be increased by one level

in each iteration in each interfering-link set, the rate adjustment
will terminate in at most MK iterations. In addition, Theorem
2 specifies the efficiency of this algorithm.
Theorem 2: The EF-based distributed algorithm can achieve
at least 1/(κ∗ + 1) of the optimal performance, where κ∗ =
maxi,m |I(m)

i | is the maximum interference degree of all CR
links over all channels, | · | denotes the cardinality of the set.
Proof: The rate adjustment in the EF algorithm is analogous
to the well-known single-user optimal Levin-Campello greedy
algorithm [13] for bit loading in an OFDM system. In allocating
each bit, this greedy algorithm calculates the cost to add one
more bit in each subchannel and chooses the subchannel that
requires the least cost, where the cost is the incremental power
necessary. It has been shown in [9] that for multiuser multi-
carrier systems, if we assume no interference exists between
users, then the same greedy algorithm also achieves optimal
performance. Denote the optimal sum of rate of this idealized
non-interfering multiuser system by R

(0)
tot,max, this sum is cal-

culated as:

R
(0)
tot,max =

N∑

i=1

M∑
m=1

R
(m)
i (13)

where R
(m)
i are the output of the greedy algorithm when

interference between users are ignored. When interference is ac-
counted for, the third “if” statement in the collision-elimination
routine of the EF-based algorithm (see Table II) guarantees
that for every interfering link set, only the link that achieves
the largest rate is remained (i.e., can access this channel),
while all other interfering links are eliminated from using this

channel (their rates on this channel are all set to 0). Denote
by Z(m) the set of links that can access channel m when the
EF algorithm is used. So for ∀z ∈ Z(m), it must be true that
R

(m)
z ≥ R

(m)
j for ∀j ∈ I

(m)
z . When interference is accounted

for, denote the sum of rate of the EF algorithm by R
(1)
tot,EF .

Then R
(1)
tot,EF =

∑M
m=1

∑
z∈Z(m) R

(m)
z . We further have the

following relationship:

R
(0)
tot,max =

M∑
m=1

N∑

i=1

R
(m)
i

≤
M∑

m=1

∑

z∈Z(m)

(|I(m)
z |+ 1)R(m)

z

≤
M∑

m=1

∑

z∈Z(m)

(κ∗ + 1)R(m)
z

= (κ∗ + 1)R(1)
tot,EF (14)

When interference exists between users, we denote the optimal
sum of rate by R

(1)
tot,max. Obviously,

R
(1)
tot,max ≤ R

(0)
tot,max ≤ (κ∗ + 1)R(1)

tot,EF . (15)

So it follows that R
(1)
tot,EF ≥ 1

κ∗+1R
(1)
tot,max. Then Theorem 2

follows.
Theorem 2 shows that the EF-based algorithm is optimal

when κ∗ = 0, e.g., when any two CR links are separated far
away such that they do not interfere with each other. When
interference exists, the algorithm’s performance lower bound
decreases linearly with κ∗. The actual performance gap will be
evaluated later on by simulations.

D. Additional Constraints

Depending on the CR’s hardware capabilities or on some
regulatory factors, additional constraints on the CRN may be
imposed. These include:
C4: Number of Parallel Transmissions: The maximum num-
ber of channels a CR transmitter can use at one time may
be bounded by Mt. In the BLP framework, this constraint is
presented as

C̃4 :
∑M

m=1

∑K
k=1 y

(m)
k,i ≤ Mt, for i = 1, . . . , N.

(16)
C5: Transmission Bandwidth: The total bandwidth a CR can
transmit over at one time is bounded by Bt. Formally,

C̃5 :
∑M

m=1

∑K
k=1 Bmy

(m)
k,i ≤ Bt, for i = 1, . . . , N.

(17)
C6: Forbidden Channels: A CR link i may be prohibited from
using a certain set of channels, say BFi ⊆ {1, . . . ,M}. This
constraint can be modeled as

C̃6 : y
(m)
k,i = 0, for k = 1, . . . , K, and m ∈ BFi.

(18)
An examination of (16) through (18) shows that the addi-

tional constraints are linear in the y
(m)
k,i ’s. Thus, they do not

fundamentally change the BLP formulation and its solutions
discussed in previous sections. The extensions of the LPSF and
the EF-based algorithms are trivial, and thus are ignored due to
space limitation.
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Fig. 3. Calculating the multi-level power mask.

V. IMPLEMENTATION ISSUES

In this section, we use the example in Figure 3 to illustrate
the main idea of calculating the power mask under multi-level
spectrum opportunity setup. We assume that the PRN operates
using frequency division duplex (FDD). At any given time, the
BS tunes to some of the M uplink channels to receive signals
from the PR mobile stations (MSs) (not shown in the figure).
We use the spectrum sharing of the uplink as the example. To
be consistent with the model in Section III, a BS operating on
multiple channels can be modeled as multiple virtual BSs that
operate on individual non-overlapping channels.

The basic idea of computing the power mask is to adapt
its interference range to the activity of neighboring PR BSs.
The interference range is defined as the signal propagation
distance dI , such that P̂

(m)
i h(m)(dI) ≤ PI , where h(m)(dI)

is the channel gain for distance dI on channel m, and the
interference tolerance PI is a small value, below which the
interference can be deemed as no harm to the PR. We also
assume that each CR has the knowledge of its location, and
thus can calculate its distance to neighboring PR BSs. The
interference-range adaption is illustrated in Figure 3: If the
channel gain is fully decided by the propagation distance, then
when BS1 is receiving on channel m, CR1’s power mask should
be such that its interference range is right smaller than the
distance between CR1 and BS1 (denoted as the smallest dotted
circle (Level 1) in the figure). When BS1 is not receiving but
BS2 is receiving, then the power mask can be increased such
that its interference range reaches the larger dotted circle (Level
2), and so on. Although this basic idea seems straightforward,
the calculation needs to take into account the following two
random factors.

A. Randomness of PR Activity

This randomness impacts the choose of right level for the
power mask. For example, in Figure 3, even if BS1’s status on
channel m is reported as not receiving at current reporting time,
there is a chance that it subsequently flips to receiving before
the next reporting time. This status change cannot be reflected to
CRs until the next report. So if a CR is transmitting based on the
power mask of Level 2, which is calculated directly according
to current status report, then unacceptable interference will be
caused to BS1, leading to a violation to the PRN. To account
for this random violation, we impose a soft guarantee, α(m) for
channel m, such that the ratio of the time the CR violates PRN
on channel m is smaller than α(m). This constraint requires
us to take into account the accumulated possibility of status-
flipping (from not-receiving to receiving) of all idle BSs that
are closer to the target CR than its closest active BS neighbor.
As a result, it might not always be appropriate to use a power
mask that corresponds to the closest active BS neighbor. For
example, in Figure 3, even if BS2 is the closet active neighbor
of CR1 in the current report, the CR should not use the power

mask of Level 2, if the possibility of BS1 flipping to receiving
is greater than α(m). The detailed mathematical treatment is
presented in our technical report [12], and is omitted here due
to page limitation.
B. Randomness of the Channel Gain

This randomness impacts the value of each power mask level.
Given P̂

(m)
i , the random fluctuation of the channel makes the

received signal strength after distance dI a random variable:
p̂
(m)
i = P̂

(m)
i h̄(dI)χ(m), where χ(m) is a unit-mean r.v. denot-

ing the random fluctuation of the channel, h̄(dI) = A0d
−µ
I is

the distance-related component of path loss, A0 is the close-
in constant, and µ is the path loss exponent. To counter this
random effect, we impose a second soft guarantee, β(m) for
channel m, which requires Pr{P̂ (m)h̄(dI)χ(m) ≥ PI} < β(m).
Since dI is fixed (this corresponds to the interference range of
the level selected in last section), P̂

(m)
i is calculated as P̂

(m)
i =

PI

h̄(dI)Q(m)(β(m))
, where Q(m)(β(m)) is the (1−β(m))-quantile of

the fluctuation χ(m), i.e., Pr{χ(m) ≤ Q(m)(β(m))} = 1−β(m).
Obviously, the frequency by which each BS reports to the

spectrum server has an impact on the calculated power mask.
The lower the frequency, the larger the uncertainty for the BS’
status between two consecutive reports, and therefore the more
conservative the power mask will be in order to guarantee the
given PRN violation constraint. On the other hand, the band-
width of the channel-status information broadcast channel also
influences the throughput of the CRN: Because CRs update their
power masks according to the periodic broadcast, the higher
the broadcast bandwidth, the quicker each CR can acquire the
channel-status information, thus more time left between two
consecutive updates for a CR to deliver data. The interesting
question is how much gain the multi-level scheme can attain
when the overhead of the broadcast has been accounted for. We
will answer this question based on simulations shortly.

VI. PERFORMANCE EVALUATION

A. Accuracy of the Approximate Algorithms
We consider a 1000× 1000 meter2 region, where 5 PRNs (5

channels) coexist with 5 CR links. The numbers of PRs over
each channel are 25, 10, 15, 20, and 25, respectively. Each
channel has 1 MHz of bandwidth. We assume the following
rate-SINR relationship: R

(m)
i = Bm log2(1 + SINR/8), and

r
(m)
i ∈ {0, 1/2, 1, 3/2, 2} bits/second/Hz for all i and m. The

locations of the PR and CR transmitters and receivers are
randomly assigned within the simulation region. A simple path
loss model with exponent of 4 is assumed for the channel gain
between any two points (i.e., hij = d−4

ij ). We assume the PRs
on all channels follow the same 2-state Markov activity model,
i.e., durations of ON/OFF states are exponentially distributed,
with the average ON and OFF periods set to 1 s and 10 s,
respectively. The transmission power of a PR is 500 mW. The
Pmax for a CR is 1 W. We assume the interference tolerance
PI = 2PI,CR = 0.12346 µW. The PR’s status report period
is 100 ms and the CR-to-PR violation bound is α(m) = 2%
for all m. A CR is capable of using all 5 channels at one
time. We compare the sum-rate of all CR links achieved in each
report period under 3 different algorithms: an exhaustive-search
algorithm that finds the optimal solution, our polynomial-time
LPSF algorithm, and the EF algorithm.

The CRN sum-rate is plotted in Figure 4 for 50 consecutive
status report periods. We randomly choose to present this trace
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among the many we have simulated. The upper bound generated
in the first iteration of the LPSF algorithm is also shown. It is
clear that the LPSF and the EF algorithms give near-optimal
solutions. In all cases, these solutions are within 5% from the
optimal solution. In most of the cases their solution is the actual
optimal solution. In addition, the upper bound provided by the
LPSF algorithm is reasonably tight. In all simulations, the gap
between this bound and the optimal solution does not exceed
10%. So this bound provides a useful reference to evaluate the
accuracy of the approximate solutions in large networks when
the optimal solution is computationally difficult to obtain.

B. Comparison between Binary and Multi-level Opportunities
Since getting the optimal solution is not our target in this

section, we simulate a larger-scale system and apply EF al-
gorithm for channel access. We consider 10 channels and 10
CR links over the same square area. The numbers of PRs on
each channel are 25, 10, 15, 20, 25, 10, 5, 15, 20, and 25,
respectively. In addition, the set of rates supported by a CR is
now given by {0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4} b/s/Hz. So the
number of binary variables in the BLP is increased to 800.
Unless indicated, the other parameters stay the same as before.
In the following results, the conventional sensing-based CRN
paradigm that yields a binary spectrum opportunity for CRs is
referred to as DS (standing for distributed sensing) scheme. The
new paradigm that leads to the multi-level spectrum opportunity
is referred to as SB (subscription-based) scheme. The results
presented are based on the average of 20 randomly generated
topologies, with a simulation time of 1000 sensing/status-report
periods for each topology.

We assume the channel-sensing period of DS scheme is 100
ms. We denote the status-report period of SB scheme by T . The
performance matric of interest is the CRN throughput, defined
as the average number of data bits that can be transmitted by
all CR links in one period divided by the duration of the period.
Because under the SB scheme, a fraction of the period, denoted
by TB , is used to receive broadcast information at each CR, the
actual data transmission time in each period is T − TB . The
overhead is given by TB = VB

BB
, where VB is the number of

bits of the collected channel-status information in one report
period, and BB is the bandwidth of the broadcast channel. For
our simulation, VB is loosely upper bounded as follows: We
assume that the channel-status information for one PR has the
format (PR id ‖ channel id ‖ channel status). The total number
of PRs is less than 200, so an id of 8 bits is enough to identify
each of them. The total number of channels is 10, so 4 bits are
enough to identify the channel a PR is working on, and 1 bit
is used to identify the status of the PR (ON/OFF). So VB <

200×(8+4+1) = 2.6K bits. We use this value in our following
calculation of the overhead. To give a conservative estimation
of the gain attained by SB scheme, we assume that the channel
sensing in DS scheme takes 0 time. Thus the throughput of
the DS scheme plotted below represents the upper bound of
any channel access schemes that are based on binary spectrum
opportunity. We ignore the EF algorithm’s computation time in
both schemes.

In Figure 5, we study the CRN throughput as function of
the PRs’ activities. Here we fix BB = 260 Kb/s, corresponding
to TB = 10 ms. It can be observed that at low PR activity,
the throughput of SB exceeds DS slightly (a 15% gain); but
at high PR activity, SB exceeds DS significantly (a 150% gain
). So it is clear that although the broadcast channel consumes
about 2.6% of the total system bandwidth, it leads to at least
15% throughput gain in worst case and 150% gain in best
case scenarios. The difference of gains is because when PR
activity is low, all neighboring PRs are often in the OFF
state. The outcome of SB becomes similar to DS in the sense
that most of the time a CR can use the highest power level
Pmax for transmission. With increased PR activity, the middle-
and low-level power masks happen more and more frequently
under the SB scheme, while DS observes more and more “0”
(no transmission) opportunities, thus the gap between the two
schemes keeps growing.

We study the impact of channel fluctuations in Figure 6,
where a channel is subject to log-normal shadowing. The
channel gain is now simulated by gij = d−4

ij 10
χ
10 , where χ

is a zero-mean Gaussian random variable denoting the channel
fluctuation measured in decibel (db). The standard deviation of
χ represents the severity of the shadowing. For each channel, we
require the soft guarantee β = 5%. We first note that the average
throughput of DS barely changes with the fluctuation because
it has a fixed power-mask set (0, Pmax). It is also observed that
with the increase of channel fluctuation, the throughput under
SB will decrease, and eventually it approaches to that of TOS.
But when the standard deviation is 6 db, which is the value for
a typical shadowing environment, SB still achieves about 50%
throughput gain over DS.

In Figure 7, we fix BB = 260 Kb/s (or TB = 10 ms) and
change the status-broadcast period as the variable. It can be
observed that in general, a shorter broadcast period leads to a
higher throughput because of the increased certainty of the PR’s
activity between two consecutive reporting moments. However,
when the broadcast period is very small, e.g., T = 40 ms, the
throughput of SB is low. This is because the broadcast of status
information occupies a significant portion of each broadcast
period, thus less time is left for data transmission.
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In Figure 8, we fix the status-broadcast period T = 100 ms,
and plot the throughput of SB under various TB (corresponding
to various broadcast channel bandwidth). It can be observed
that the throughput of SB degrades linearly with the increase of
TB (or equivalently, the decrease of the broadcast bandwidth),
because less and less fraction of time in each period is left
for transmitting data. For low PR activity, the throughput of
SB crosses that of DS after TB is greater than 20 ms or BB

is smaller than 130 Kb/s, which is about 1.3% of the total
system bandwidth. For high PR activity, the crossing point is
TB = 50 ms. This corresponds to BB ≈ 50 Kb/s (0.5% of
the total bandwidth). The extremely small bandwidth at the
crossing in both situations indicate that the overhead of SB
is basically ignorable compared with the significant throughput
gains it leads to.

VII. CONCLUSIONS

In this paper, we developed both centralized and distributed
algorithms for the problem of coordinated channel access in
a spectrum-server-assisted CRN. The problem is formulated
under a multi-level spectrum opportunity framework that reflects
the microscopic spatial opportunity available for CRs. We also
applied our algorithms to study the throughput gains achieved
by this multi-level framework over the conventional binary
ones while taking its overhead into account. We showed that
significant gains can be achieved under the assistance of a
narrow-band channel, which periodically broadcasts channel-
status information to facilitate CRs calculating their multi-level
spectrum opportunity. Currently our work only applies to single-
hop ad hoc CRNs. Our future efforts will include the routing
into the problem for a multi-hop environment.
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