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Abstract—Wireless transmissions are inherently vulnerable to jamming attacks. Frequency hopping (FH) and transmission rate
adaptation (RA) have been separately used to mitigate jamming. When RA is used alone, it has been shown that a jammer
who randomizes its power levels can force the transmitter to always operate at the lowest rate, by maintaining the average
jamming power above a certain threshold. On the other hand, when only FH is used, a high throughput overhead is incurred due
to frequent channel switching. In this paper, we propose to mitigate jamming by jointly optimizing the FH and RA techniques.
This way, the transmitter can escape the jammer by changing its channel, adjusting its rate, or both. We consider a power-
constrained “reactive-sweep” jammer who aims at degrading the throughput of the wireless link. The jammer sweeps through
the set of channels, jamming a subset of them at a time, using the optimal jamming power. We model the interactions between
the legitimate transmitter and jammer as a constrained zero-sum Markov game. The transmitter’s optimal defense strategy is
derived by obtaining the equilibria of the constrained Markov game. This policy informs the transmitter when to hop to another
channel and when to stay on the current channel. Furthermore, it gives the best transmission rate to use in both cases (hop or
stay). The structure of the transmitter’s optimal policy is shown to be threshold type, whereby the transmitter stays on the same
channel up to a certain number of time slots after which it hops. We analyze the “constrained Nash equilibrium” of the Markov
game and show that the equilibrium defense strategy of the transmitter is deterministic. Numerical investigations show that the
new scheme improves the average throughput and provides better jamming resiliency.

Index Terms—Dynamic frequency hopping, jamming, Markov decision processes, Markov games, rate adaptation.
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1 INTRODUCTION

The broadcast nature of wireless communications
leaves them vulnerable to various security threats, in-
cluding jamming attacks. Adversaries can use readily
available off-the-shelf commercial products to launch
stealth jamming attacks [1]–[3]. In such attacks, an
adversary injects interfering power into the wireless
medium, hindering legitimate transmissions in one
of two ways: (i) the jamming power can degrade
the signal-to-interference-plus-noise ratio (SINR) at a
legitimate receiver, or (ii) in carrier-sensing networks,
continuous jamming may prevent the legitimate trans-
mitter from accessing the medium, creating a DOS
attack. In this paper, we are concerned with the first
type of attacks.

Several jamming behaviors have been studied in the
literature, including random, constant, proactive, and
reactive jamming (see, for example, [2], [4] and the
references therein). In this paper, we consider a time-
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slotted multi-channel reactive jammer that can listen
to various channels and react accordingly. We assume
packetized transmissions in which each data packet is
explicitly acknowledged by the receiver (many wire-
less communication systems, such as Wi-Fi, 4G, and
LTE are packet-switched). The strategy adopted by the
jammer to detect link activity depends on whether
the jammer is in the range of the transmitter and/or
receiver1. If the jammer is in the transmitter’s range, it
learns about the link activity by listening to the chan-
nels at the beginning of each time slot. On the other
hand, if the jammer can listen only to the receiver,
then it learns about the link activity by listening to
the feedback messages from the receiver. In this paper,
we primarily focus on the latter case, which arises
in several scenarios, e.g., when the jammer is hidden
from the transmitter but not the receiver, or when the
transmitter prevents the jammer from listening to it
by using beam-forming techniques. In particular, we
consider a “reactive-sweep” jammer that attacks the
legitimate receiver by jamming several channels in
each time slot. Unlike a typical sweep jammer, which
continuously sweeps through channels irrespective
of the previous jamming outcomes, the considered

1. The terms ‘transmitter/receiver’ are used to denote the nodes
that transmit/receive the data packets.
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reactive-sweep jammer changes its sweep strategy
based on its listening outcome at the end of each slot.
If link activity is detected on a given channel, the
jammer switches from a multi-channel attack (where
it distributes its power among m channels) to a single-
channel attack during the subsequent slot (where the
jammer concentrates its power on one channel). If
the transmitter hops away from the jammed channel,
the jammer resorts back to its multi-channel jamming
strategy. Although transmitting continuously at the
maximum power enables the jammer to cause the
maximum harm, this happens at the cost of high
energy consumption and, more importantly, a high
likelihood of being detected. Hence, in this work, we
assume a power-constrained jamming model. More
details of this model will be given in Section 3.2.

Frequency hopping (FH) [5], [6] and rate adaptation
(RA) [7], [8] are commonly used techniques to miti-
gate jamming. However, these techniques are shown
to be ineffective when applied separately [9]–[11]. In
the case of RA with no FH, it was shown in [9] that by
randomizing its power levels while maintaining the
average jamming power above a certain threshold, the
jammer can force the transmitter to always operate at
the lowest rate. Experiments on IEEE 802.11 networks
with different RA schemes (e.g., SampleRate [12],
AMRR [13], Onoe [14]) also confirm this observation.
On the other hand, it was shown in [10], [11] that
FH is inadequate in coping with jamming attacks
on 802.11 networks. In particular, when the number
of channels is small and channels are not perfectly
orthogonal, the jammer can degrade the average link
throughput significantly [10], [11]. Many wireless sys-
tems (e.g., IEEE 802.11) are equipped with both FH
and RA capabilities, but these capabilities are not used
in an integrated fashion against jamming attacks. Our
aim in this paper is to study the effectiveness of a
jointly optimized RA and FH technique to mitigate
jamming.

One aspect of FH that has been largely overlooked
is that it results in a throughput reduction due to
channel switching [15] (i.e., “settling time” that is
needed when switching between channels). This loss
depends on the specific implementation. If the hop-
ping rate is too high, a significant throughput loss
will be incurred. On the other hand, operating on
the same channel for a longer period increases the
risk of being hit by the sweep jammer. In adapting
its transmission rate, the transmitter faces a similar
dilemma. A high rate increases the jammer’s chances
of corrupting the packet. On the other hand, a lower
rate increases the signal’s robustness to jamming, but
reduces the throughput. We seek to derive a jointly
optimal FH and RA policy for the transmitter against
a reactive-sweep jammer. This policy informs the
transmitter when to switch (hop) to another channel
and when to continue (stay) on the current channel.
It also determines the best transmission rate to use in

both cases (hop or stay). By optimizing the hop and
stay decisions taken by the transmitter, we minimize
the hop/switching rate of the transmitter’s channel.
Hence, the throughput loss incurred due to channel
switching is minimized and the throughput is maxi-
mized.

Main Contributions–The main contributions of the
paper are as follows:
• We model the interactions between a legitimate

transmitter and a power-constrained reactive-
sweep jammer as a constrained zero-sum Markov
game. The transmitter dynamically decides when
to switch the operating channel and what trans-
mission rate to use. On the other hand, the
jammer dynamically adjusts its jamming power
level while satisfying an average jamming power
constraint.

• The optimal defense strategy of the transmitter
is derived by obtaining the equilibria of the con-
strained Markov game, and the structure of the
optimal policy is shown to be threshold type.
Specifically, it is “optimal” for the transmitter to
stay on a channel up to a maximum number of
time slots after which it needs to hop. We analyze
the “constrained Nash equilibrium (NE)” of the
Markov game and show that the equilibrium de-
fense strategy of the transmitter is deterministic.

• We compare the average throughput and suc-
cess rate (percentage of unjammed transmissions)
under the proposed technique with a game-
theoretic dynamic FH design (with no RA).
Through numerical investigations, we show that
the new scheme significantly improves the av-
erage throughput and jamming resiliency, espe-
cially when the number of channels is small
and/or the hopping cost is high. For instance,
when the number of channels is between 3 and
6: (i) the throughput gain achieved by the new
scheme ranges from ∼ 15x to ∼ 1.37x, and (ii)
the improvement in the success rate varies from
∼ 1.7x to ∼ 1.13x.

Paper Organization–The rest of the paper is or-
ganized as follows. We discuss the related work in
Section 2. The channel, link, and jamming models are
presented in Section 3. In Section 4, we use a zero-
sum Markov game to study the interactions between
the transmitter and jammer. Using this game, we
derive the optimal defense strategies in Section 5. Our
numerical experiments are presented in Section 6. Fi-
nally, in Section 7 we conclude the paper and provide
directions for future research.

2 RELATED WORK

In this section, we briefly review existing works on
anti-jamming FH and RA techniques. As explained
before, current techniques in the literature employ
either FH or RA to mitigate jamming, but not both.
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FH-based Anti-jamming Schemes–Several FH
schemes have been proposed in the literature to
mitigate jamming. In [5] and [1], two reactive FH
schemes were proposed. In these schemes, the legit-
imate transmitter and receiver hop to a new chan-
nel once they determine that the current channel is
jammed. A proactive anti-jamming FH scheme was
proposed in [6], in which the transmitter and receiver
proactively hop between channels without attempting
to verify the status of the channels hopped from/to.
Compared to a proactive approach, reactive FH min-
imizes the hopping rate. However, in proactive FH,
the legitimate transmitter and receiver do not need to
detect the presence of a jammer. The problem of anti-
jamming FH without pre-shared keys was studied
in [16]. The authors in [16] proposed an uncoordi-
nated FH (UFH) scheme, in which the transmitter and
receiver perform random FH. Other UFH schemes
were proposed in [17], [18]. The efficiency of UFH-
based communication was studied in [19]. In [20],
coordinated and uncoordinated FH schemes were
proposed for timely delivery of short warning mes-
sages in sensor networks. Recently, following a game-
theoretic framework, the authors in [21] used FH
for jamming mitigation in cognitive radio networks.
In [22], the authors developed a combinatorial game-
theoretic framework for anti-jamming rendezvous in
dynamic spectrum access networks. FH was shown to
be largely inadequate in coping with jamming attacks
in IEEE 802.11 WLANs [10], [11].

RA-based Anti-jamming Schemes–Several algo-
rithms were proposed for RA [23]–[30]. RA for the
IEEE 802.11 protocol was investigated in [7], [31],
[32]. Experimental and theoretical analysis of optimal
jamming strategies against commonly deployed RA
schemes in IEEE 802.11 WLANs indicate that the per-
formance can be significantly degraded with very few
interfering pulses [9]. To mitigate such interference,
the authors in [33] proposed RA and power control
schemes. However, the performance of their schemes
has not been studied under jamming. The authors
in [7] studied the ability of RA and power control
in mitigating jamming. Following a game-theoretic
framework, it was shown in [9] that if only RA is
used to mitigate jamming, then the jammer can force
the transmitter to always operate at the lowest rate
by merely randomizing its power levels, provided
that the average jamming power is above a given
threshold. The results in [9] corroborate our claim that
RA on a single channel is not effective, and motivates
the need for jointly considering RA and FH.

3 TRANSMISSION AND JAMMING MODELS

We consider a legitimate transmitter that communi-
cates with its receiver in the presence of a jammer, as
shown in Figure 1. The jammer can overhear the re-
ceiver’s feedback messages (e.g., ACKs, NACKs), but

Fig. 1: Transmission model. The jammer (Jx) is within
the transmission range of the receiver (Rx) but not the
transmitter (Tx). Tx, Rx, and Jx follow a time-slotted FH
communication system.

not the transmitter’s messages. This scenario arises in
numerous wireless systems, including uplink satellite
communications (i.e., ground station to satellite). The
footprint of the satellite beam on Earth is typically
large. Therefore, a jammer who is close to the ground
station can overhear the downlink feedback messages
from the satellite. However, because of the direction-
ality of the uplink transmission, the jammer cannot
overhear the uplink transmissions from the ground
station to the satellite. The scenario in Figure 1 also
occurs when the jammer is hidden from the transmit-
ter but not the receiver. This scenario is commonly
referred to as ‘hidden terminal problem’ in 802.11
systems [34].

3.1 Transmission Model
We consider a packet-based time-slotted system. Dur-
ing a time slot, the parameters for the transmitter (Tx)
and jammer (Jx) are assumed to remain unchanged.
The Tx and receiver (Rx) are each equipped with
a single radio, and can communicate on any one
of K available channels in a given slot. Let F =
{f1, f2, . . . , fK} denote the set of non-overlapping
channels. We assume that the Tx supports M + 1
different transmission rates R = {R0, R1, . . . , RM},
where R0 < R1 < . . . < RM . These rates are obtained
through different combinations of modulation and
coding schemes. In addition to jamming, channel may
also experience additive white Gaussian noise with
variance σ2, which is assumed to be the same across
all channels. On each channel, the rate that can be
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Fig. 2: Rate vs. SINR relationship for data packets.

achieved by the Tx depends on the received SINR.
On a given channel, let the received power from the
Tx be PR, and let PJ be the jamming power emitted
by Jx. The received jamming power at the Rx will be
attenuated by a factor α, 0 ≤ α ≤ 1. Then, the SINR
at the Rx, denoted by η, is given by:

η =
PR

αPJ + σ2
. (1)

Since the main focus in this work is to study the effect
of jamming, the above channel model is sufficient to
capture the interactions between the Jx and the Tx
even though it ignores the effect of channel attenua-
tion. Similar channel model is used in [9], [35] where
transmission failures are primarily due to jamming.

For a given received SINR, only certain rates can
be decoded at the Rx. The relationship between the
“achievable” rates (i.e., rate of a decodable packet)
and the SINR is shown in Figure 2. For i = 1, . . . ,M ,
when γi−1 ≤ η < γi, only rates R0, R1, . . . , Ri−1 can
be decoded at the Rx. We assume that the packets
are sufficiently long and if the Tx sends a packet at
rate Ri or higher but the received SINR is less than
γi, the transmitted packet will be completely lost. We
also assume the availability of a feedback mechanism
from Rx to Tx. If the transmission is successful, the
Rx sends an ACK message to the Tx. On the other
hand, if transmission fails, the Rx sends a negative
ACK (NACK) to the Tx. The ACK/NACK messages
can be overheard by the Jx, but we assume they cannot
be jammed because of the Tx-Jx distance and the fact
that feedback messages are often sent at the lowest
transmission rate.

3.2 Jamming Model
We consider a time-slotted multi-channel reactive-
sweep Jx. The Jx sweeps through the K channels,
jamming m channels at a time, where m ≤ K (fixed).
A typical sweep Jx is depicted in Figure 3 with K = 9
and m = 3 (hence the length of the sweep cycle is
K/m = 3). Consider the first sweep cycle. The Jx
attacks channels f1, f6, and f7 in the first slot, f2, f4,
and f9 in the second slot, and f3, f5, and f8 in the

Fig. 3: Example of a typical sweep Jx (K = 9 and m = 3).
Three sweep cycles are shown.

third slot. Note that in each slot, the Jx selects three
channels that have not been jammed since the start of
the current sweep cycle. A randomly generated sweep
pattern is selected at the start of each new sweep
cycle, as can be seen from the second and third sweep
cycles in Figure 3.

To implement a reactive-sweep jammer, we modify
the classic sweep jamming model as follows. After
injecting its interference power into the channel, the
Jx listens to ACK/NACK messages over the attacked
channels. Detecting an ACK means that the Jx is on
the same channel as the Tx-Rx pair but its jamming
power was not sufficient to prevent data reception. If
the Jx detects a NACK, then the legitimate transmis-
sion was successfully jammed. If no messages were
detected by the Jx, this means the Tx-Rx have been
tuned to a different channel than the Jx’s channel.
Based on this outcome, the Jx decides to either: (i)
continue sweeping according to the current sweep
pattern, (ii) stop sweeping and focus on one channel,
or (iii) restart the sweep cycle using a new random
sweep pattern. The details of the Jx sweeping strategy
will be explained in Section 4.1. When the reactive-
sweep Jx decides to stop sweeping, the jamming
attack changes from a multi-channel attack (in which
the Jx distributes its power among m channels) to a
single-channel attack (in which the Jx emits all of its
power on a single channel).

As in [9], we assume a power-limited jamming
model (recall that only RA was considered in [9]). In
each time slot, Jx can emit on each of the m channels a
maximum power of Pmax. The Jx also has a constraint
Pavg on its time-average power, where Pavg < Pmax. In
each time slot, the Jx can choose from M + 1 discrete
power levels {PJ0 , PJ1 , . . . , PJM }. We assume that the
Jx emits the same power level on all m channels. Let
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M def
= {0, 1, . . . ,M}. PJi is given by:

PJi =

PR

γM−i
− σ2

α
, i ∈M. (2)

PJi , i ∈M, is calculated by setting η in (1) to γM−i
in Figure 2 and finding the corresponding PJ in (1).
Similar to [9], under an average-power constraint, the
attack strategy is to choose a distribution on the set
of available powers that satisfies the average-power
constraint. Let PJ be the vector that contains the Jx’s
set of pure strategies. Let Js denote the strategy space
of the Jx and Y be an (M + 1)-probability simplex.
Then, Js ⊂ Y and is given by:

Js =

{
y = (y0, y1, . . . , yM ),

M∑
i=0

yi = 1,yPTJ ≤ Pavg

}
.

(3)
Switching and Jamming Costs–When hopping

from one channel to another, the Tx needs to remain
idle for a brief period, called the settling time. The
duration of this time period depends on the device
(e.g., for the Anthros chipset card, this time is about
7.6 ms [6]). The settling time is required to reconfigure
the device on the new channel. Additional loss in
throughput occurs due to the lack of synchronization
between the Tx and Rx’s hopping instances. Collec-
tively, we denote the average loss in throughput due
to hopping by C, and refer to it as hopping cost.
Outage periods also occur when the Tx is jammed.
Jamming disrupts the link between the Tx and the Rx,
which needs to be re-established through exchanging
several control packets that do not contribute to data
throughput. We denote the average loss in throughput
due to jamming by L, and refer to it as jamming
cost. We account for C and L in deriving the optimal
defense policy of the Tx.

We assume that the Tx has some prior belief about
the Pavg of the jammer. The Tx used this belief to
compute its optimal defense strategy. If the Tx does
not have any information about Pavg, it can set Pavg =
Pmax. In this case, the Tx’s policy will be pessimistic.

4 DYNAMIC FH GAME WITH RA

In this section, we develop a repeated game model
between the reactive-sweep Jx and the Tx. Using this
model, we derive the optimal attack (defense) strategy
of the Jx (Tx). We first discuss the attack (defense)
strategies that can be adopted by the Jx (Tx). As noted
in [21], these attack and defense strategies mimic an
arms race. If the Jx improves its attack strategy, the Tx
counters that with an improved defense strategy, and
vice versa. The strategies adopted by each player also
depend on hardware and computational resources.
Below we discuss the attack and defense strategies,
considering the jamming and transmission models of
Section 3.

Fig. 4: Illustration of reactive-sweep Jx in a single slot.

4.1 Attack and Defense Strategies
During any time slot, the Jx emits its jamming power
and then listens for an ACK/NACK message at the
end of the slot. If the Jx overhears an ACK/NACK on
one of the m jammed channels, it concludes that the
Tx is on that channel2. If K = 1, the only way for the
Tx to escape from the Jx is to adapt its rate. In this
case, it is shown in [9] that by randomizing its power
levels, the Jx can enforce the Tx to use the lowest rate.
Therefore, when K > 1, it is better for the Tx to hop to
another channel and avoid having to reduce its rate.
Knowing this, the Jx may also decide to hop between
channels in search of the Tx.

In [21], a few rounds of arms race have been
discussed. It is argued that the best strategy for the Jx
is to sweep through all the K channels sequentially,
jamming m channels in each slot, and to restart a
new sweep cycle with a randomly selected sweep
pattern. In our model, we allow the Jx to further
aggravate its attack strategy by making use of its
listening capability. Specifically, when Jx overhears
either an ACK or a NACK on a channel, it learns that
the Tx is operating on that channel. Accordingly, the Jx
attacks the detected channel, allocating all of its power
to that channel until the Tx leaves the channel. Unlike
the Jx, the Tx does not always learn the presence
of the Jx based on the ACK/NACK messages. If a
NACK is received, the Tx learns the Jx’s presence on
the channel. However, if an ACK is received, the Tx
does not have this information3. Therefore, when a
NACK is received, it is better for the Tx to hop to
a new channel; because otherwise it will be jammed
again in the subsequent slot. Being aware of this, the

2. A NACK is generated when the transmission fails either due to
a jamming attack or due to a bad channel. We restrict our attention
to transmission failures due to jamming attacks.

3. The transmission is successful in the presence of the Jx if the Tx
uses a sufficiently low rate that is de-codable at the given jamming
power.
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Jx will also leave the channel after receiving a NACK
and will start a new sweep cycle with a randomly
generated sweep pattern4. When the Jx receives an
ACK, it continues to stay on the same channel until it
either receives a NACK or hears nothing. If the Jx does
not hear any feedback messages, it continues with the
current sweep cycle. We refer to the Jx that adopts the
channel hopping strategy derived in the last round of
the aforementioned arms race as a reactive-sweep Jx.

We consider a jamming game between the Tx and the
reactive-sweep Jx. Although the hopping decisions of
the Jx are fixed, the Jx still needs to decide about the
amount of power to emit in each slot while satisfying
its average and maximum power constraints. The Tx’s
decision consists of what transmission rate to use and
also whether to stay on the same channel or to hop to a
new channel. We model the interactions between the
Tx and the reactive-sweep Jx as a zero-sum game and
derive the optimal attack and defense policies.

4.2 Frequency Hopping Strategies
The hopping pattern of the reactive-sweep Jx can be
described as follows. The Jx sweeps through the K
channels sequentially, jamming m non-overlapping
channels in each slot. At the end of each slot, the Jx
will take one of the following actions based on what
it overheard. First, if no ACK/NACK is overheard, Jx
continues to jam the next m channels in the sweep cy-
cle (we refer to this action as ‘continue’). If an ACK is
overheard on a particular channel, Jx continues to jam
only that channel in the next slot, changing its attack
from a multi-channel attack to a single-channel attack
(we refer to this action as ‘engage’ since the Jx stops
sweeping and keeps attacking the current channel).
Finally, if a NACK is overheard or the sweep cycle
ends, a new random cycle is restarted immediately
(we call this action as ‘restart’). The various actions of
the reactive-sweep Jx are illustrated in Figure 4.

For the Tx, we assume that it does not have any
means to know the quality of various channels and
it does not assign priority to any channel. The Tx-
Rx pair follows a common FH pattern, generated by
a pseudorandom noise (PN) sequence. We note that
our optimization of the Tx’s channel hopping policy is
in terms of how long it stays on a channel (in number
of slots) before it hops to a new channel5.

4.3 Reward
Recall that a data transmission at rate Ri is successful
only if the SINR at the Rx is at least γi. If an ACK is
received after transmitting at rate Ri, the Tx obtains
a reward of Ri units. In line with [21], we define the

4. In arriving at this strategy space we assumed a pessimistic
scenario where Tx always leaves the jammed channel. However,
this pessimistic assumption leads to pessimistic Tx’s strategy, and
Tx only benefits if the Jx deviates from its strategy.

5. This duration is referred to as the channel residency time in [6].

Tx payoff in a given slot as the difference between
the reward and the costs it incurs in that slot. Let Un
denote the Tx’s payoff in slot n. Then,

Un = R(n)− L · 1[successful jamming]−C · 1[Tx hops]

where R(n) ∈ R is the transmission rate in slot n and
1[·] is the indicator function. An action taken by the Tx
in a given slot affects its payoff in future slots. Thus,
we will consider a total discounted payoff (Ū ) with a
discount factor δ ∈ (0, 1), which indicates how much
the Tx values its future payoff over its current payoff.
Formally,

Ū =
∑
n

δn−1Un. (4)

In the next section, we model the interactions be-
tween the Tx and Jx as a zero-sum Markov game
and derive the constrained NE (recall that the Jx
is average-power constrained). We also characterize
the properties of the optimal policies using Markov
decision processes (MDPs).

5 ZERO-SUM MARKOV GAME

A Markov game is characterized by a state space, an
action space, an immediate reward for each player,
and transition probabilities. The decision epochs are
taken at the end of each time slot, and the effect of
the decision takes place at the beginning of the next
slot.

5.1 Game Formulation

In this section, we formulate our zero-sum Markov
game.

5.1.1 State Space

The state of the system identifies the status of the
Tx. The Tx’s status is described by: (i) determining
whether the Tx is jammed or not, and (ii) if not, for
how many slots the Tx has been successful on the
current channel. Keeping track of the channels that
the Tx used in the past and the residency times of
these channels is not helpful to the Tx. The reason for
this is that while the Tx is operating on a channel, say
f , it does not know which channels the Jx is currently
sweeping unless it receives a NACK, and if the Tx is
successful on channel f for k successive slots, it can
only infer that the Jx did not successfully jam channel
f in the last k slots.

Let X denote the state space. Then,

X =

{
J, 1, 2, . . . ,

⌈
K

m

⌉}
(5)

where J denotes that the Tx is jammed and i =
1, 2, . . . ,

⌈
K
m

⌉
denotes that the Tx has been successful

on the current channel for the last i consecutive slots.
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5.1.2 Action Space
At the end of each slot, the Tx decides whether to stay
on the current channel or hop to a new channel. It also
decides which rate to use from the set R. Therefore,
the set of actions available to the Tx for any state in
X is as follows:

A = {(s,R0), . . . , (s,RM ), (h,R0), . . . , (h,RM )} (6)

where (s,Ri), i ∈ M represents the decision to stay
on the current channel and use rate Ri, and (h,Ri)
represents the decision to hop to a new channel and
use rate Ri. For notational convenience, we write
si

def
= (s,Ri) and hi

def
= (h,Ri),∀i ∈ M. From the

discussion in Subsection 5.2, the Tx takes actions
{(h,R0), . . . , (h,RM )} once it is in state J . In all other
states, it can take any action in A.

5.1.3 Immediate Reward
Un = Un(x, a1, a2, x

′) represents the immediate re-
ward the Tx receives after going from state x to state
x′ when the actions taken by the Tx and the Jx are
a1 ∈ A and a2 ∈ PJ , respectively. This reward does
not depend on the slot index, hence we drop the
subscript n. For any (a1, a2, x) ∈ A × PJ × X , the
immediate payoff of the Tx is given by:

U(·, a1, a2, x′) =
−L− C, if x′ = J, a1 = hi, a2 = PJj , j > M − i
Ri − C, if x′ = 1, a1 = hi, a2 = PJj , j ≤M − i
−L, if x′ = J, a1 = si, a2 = PJj , j > M − i
Ri, if x′ 6= J, a1 = si, a2 = PJj , j ≤M − i.

Note that the Tx’s reward depends only on the
action it takes and the new state it enters, and not
on its current state. Since the Jx cannot observe the
state of the Tx, it chooses its power level such that its
average-power constraint is satisfied.

5.1.4 Transition Probabilities
Let P (x′|x, a1, a2) denote the transition probability to
state x′ given that the current state is x, the Tx chooses
action a1 ∈ A, and the Jx chooses action a2 ∈ PJ . First,
let us consider the case where the Tx’s action involves
hopping to a new channel. Let the Tx be on channel
f after hopping. When action hi is taken in any state,
the state on the new channel can be either J or 1,
∀i ∈ M. Let x = J . Then, on taking action hi the
system enters state J again only if the Jx also hops
into channel f and uses a power level that does not
allow the Tx to succeed at rate Ri. Recall that on each
successful jamming the Tx hops to a new channel,
and the Jx repeats the jamming process with a new
sweep pattern that is independent of its past sweep
pattern. Then, the Tx and Jx hop to the same channel
with probability m/(K − 1). Hence, P (J |J, hi, PJj ) =
1− P (1|J, hi, PJj ), i ∈M, is given by:

P (J |J, hi, PJj ) =

{
m/(K − 1), if j > M − i
0, otherwise. (7)

Taking action hi, i ∈ M, in state x ∈ X \ J , say
x = x̃, the Tx’s next state can be either x′ = J or 1. x′

will be equal to 1 if any of the following happens: (i)
channel f is already swept by the Jx, (ii) channel f is
not swept by the Jx and the Jx does not hop to it in
the next time slot, or (iii) the Jx hops to f and uses
a power level that does not disrupt the transmission
at rate Ri. Let a1 = hi, a2 = PJj and j > M − i, then
the Tx is successful on f if the Jx does not hop into
f . Thus, assuming j > M − i

P (1|x, hi, PJj ) = 1− P (J |x, hi, PJj )

=
mx

K − 1
+
K − 1−mx

K − 1

{
1− m

K − 1−mx

}
= 1−m/(K − 1). (8)

Therefore,

P (1|x, hi, PJj ) =

{
1−m/(K − 1), if j > M − i
1, otherwise.

(9)

Now consider the case where the Tx decides to
stay on its current channel. Suppose that the Tx is
on channel f and state x ∈ X \ J , say x = x̃, and
takes action si, i ∈ M. Then, the Tx enters into state
x′ = J or x′ = x̃ + 1. x′ will be equal to J in one of
two cases. First, if the Jx did not sweep f in the last x̃
slots, hops into f in the next slot, and jams at a power
that does not allow decoding at rate Ri. Second, if
the Jx is already on f and jams at a power that does
not allow decoding at rate Ri. The probability of the
first case can be computed as m/(K − mx̃) and the
probability of the second case is mx̃/K. Note that if
the jamming power is PJj in the first case, then it is
mPJj in the second case (i.e., single-channel attack).
Let γ(j,m)

def
= PR

αmPJj
+σ2 . Then,

P (J |x, si, PJj ) = 1− P (x+ 1|x, si, PJj )

=


m(x+1)
K , if x < K/m and j > M − i

mx
K , if x < K/m and γ(j,m) < γi

0, otherwise.
(10)

Next, we introduce the required notations to define
the Tx and Jx strategies and their objective functions,
following the notational convention of [36]. In each
time slot, the Tx takes an action that depends on
its past observation. We will only consider Markov
stationary policies, where the Tx takes an action based
on its current state only (note that the state has
information of past history). As stated in [37][Ch. 4],
for any given history-dependent policy, there exists
a Markov policy that is equally good. The set of
Markov stationary policies of the Tx is denoted by
Fs. Let M(A) denote the distribution on set A and
f : X → M(A) denote the strategy of the Tx. Let
f(x)

def
= {f(x, a1), a1 ∈ A}, where f(x, a1) is the

probability of choosing action a1 ∈ A in state x ∈ X .
Similarly, let the Jx’s strategy be g : X → PJ , and
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let g(x)
def
= {g(x, a2), a2 ∈ PJ}, where g(x, a2) is the

probability of choosing action a2 ∈ PJ in state x ∈ X .
Since the Jx does not know the state, for any Jx’s
strategy y = (y0, . . . , yM ) ∈ Js, g(x) = y,∀x ∈ X .
Define Yi =

∑
j>M−i yj , i ∈ M, i.e., Yi denotes the

probability that the Jx chooses a power larger than
PJi .

Let r : X × A × PJ → R denote the immediate
reward for the Tx. For any actions a1 and a2 taken by
the Tx and Jx, respectively, and any state x, r(x, a1, a2)
is given by:

r(x, a1, a2) =
∑
x′

U(x, a1, a2, x
′)P (x′|x, a1, a2). (11)

For given f ∈ Fs and y ∈ Js, the expected dis-
counted payoff of the Tx when the initial state is x
is:

Ṽ (x, f ,y) = Ef ,y

{∑
n

δnr(Xn, A1n, A2n)| X0 = x

}
(12)

where {(Xn, A1n, A2n) : n = 1, 2, . . .} is a sequence of
random variables, denoting the state and the actions
of the Tx and Jx in each slot, respectively. This se-
quence evolves according to the policy (f ,y). The
operator Ef ,y denotes the expectation over the process
induced by the policies f and y.

The Tx’s objective is to choose a policy f that results
in the highest expected reward starting from any state
x ∈ X , and is defined as:

VT (x,y) = max
f∈Fs

Ṽ (x, f ,y). (13)

In contrast, the Jx’s objective is to choose a strategy
y that minimizes the Tx’s expected discounted payoff.

VJ(x, f) = min
y∈Js

Ṽ (x, f ,y). (14)

Note that the strategy space of the Jx is constrained,
whereas the Tx can choose any stationary policy. A
strategy pair (f∗,y∗) is constrained NE if the follow-
ing two conditions are satisfied:

• y∗ ∈ Js.
• ∀x ∈ X, f ∈ Fs, and y ∈ Js,

Ṽ (x, f ,y∗) ≤ Ṽ (x, f∗,y∗) ≤ Ṽ (x, f∗,y). (15)

Let V ∗(x)
def
= Ṽ (x, f∗,y∗). Then, {V ∗(x), x ∈ X} is

referred to as the value of the zero-sum game6.
Theorem 1: The zero-sum game has a stationary

constrained NE.
Proof: While the Jx aims to minimize the Tx’s pay-

off, it needs also to meet its average-power constraint.
Since the Jx does not know the value of the current
state, its average-power constraint for any strategy y
(i.e., yPTJ ≤ Pavg) can be equivalently written as a

6. If (f̃ , ỹ) is another equilibrium, it also results in the same value
of the game [36][Sec. 3.1].

constraint on an expected discounted cost, as follows:

Cβ(f ,y) = (1− β)Ef ,y

{∑
n

βn−1C(Xn, A1n, A2n)

}
≤ Pavg

(16)

for some β ∈ (0 1). C(Xn, A1n, A2n) denotes the
cost for the Jx, which is the power it chooses in
slot n, i.e., C(·, ·, A2n) = A2n. Further, by choosing
a strategy y′ such that y′0 = 1, the constraint on the
expected discounted cost is strictly met. Thus, strong
Slater condition in [38] is verified and the existence of
stationary constrained NE follows from Theorem 2.1
in [38].

5.2 Tx Optimal Defense Strategy

In this section, we study the properties of the Tx’s
optimal defense strategy against a fixed Jx’s strategy.
The expected reward of the Tx when the Jx’s strategy
is y is denoted by ry : X ×A→ R. For a given state-
action pair (x, a), ry(x, a) is given by:

ry(x, a) =

M∑
i=0

yir(x, a, PJi). (17)

Let Py(x′|x, a) denote the probability that the Tx
enters state x′. Then,

Py(x′|x, a) =

M∑
i=0

yiP (x′|x, a, PJi). (18)

Let f∗y(X) denote the policy that maximizes the
expected discounted reward function when the Jx
uses strategy y. Since y does not depend on the
state, the optimal policy f∗y(X) can be obtained by
solving a single player MDP with the reward and
transition probabilities defined in (17) and (18), re-
spectively. Then, f∗y(X) is a deterministic policy [37],
i.e, f∗y : X → A. For notational convenience, we do not
explicitly indicate this dependency on y, and write
V (x)

def
= VT (x,y).

We use the value iteration method [37][Ch. 6] to
derive the optimal defense strategy and its properties.
The well-known Bellman equations for the expected
discounted utility maximization problem in (13) can
be written as follows:

Q(x, a)
def
= ry(x, a) + δ

∑
x′∈X

Py(x′|x, a)V (x′)

=
∑
x′∈X

Py(x′|x, a)
(
ry(x, a, x′) + δV (x′)

)
(19)

V (x) = max
a∈A

Q(x, a).

Note that in our formulation, states J and dK/me
are equivalent because the Jx will start the sweep
cycle afresh and the Tx can only take hop decisions in
these states. Hence, when the Tx begins in either state
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(J or dK/me), it will get the same total discounted
reward, i.e., V (J) = V (dK/me). From (19), for any
x = J, 1, . . . ,K−1, V (x) is expressed in terms of V (J)
and V (x + 1). Below we establish the monotonicity
of V on the state space X \ J by restricting the Tx’s
reward in state dK/me, and use this monotonicity
property to establish the structure of the optimal pol-
icy7. For ease of exposition, we provide the analysis
for the case m = 1. Similar analysis follows when
m > 1.

Lemma 1: V (·) is a decreasing function on
{1, 2, . . . ,K}.

Proof: See Appendix A.
From (7) and (8), we note that when the Tx takes

action hi, i ∈M, the probability of entering into state
J or 1 does not depend on the current state. We make
use of this observation and the monotonicity of the
function V (·) to derive the following structure of the
optimal policy.

Proposition 1: The optimal policy f∗ satisfies:
• There exists constants K∗ ∈ {1, . . . ,K − 1} and
i∗ ≤M such that:

f∗(x) = hi∗ for K∗ ≤ x ≤ K−1 and f∗(0) = si∗ .

• For any integers x and y, if 1 ≤ x < y < K∗,
f∗(x) = sj , and f∗(y) = sk, then j ≥ k.

• If ry(J, si) is decreasing in the index i, then i∗ = 1.
Proof: See Appendix B.

The above proposition says that when the Tx hops
to a new channel it will stay on this channel until it
is either jammed or it spent K∗ successive slots on
that channel. While operating on a given channel, the
Tx adapts its transmission rate–the Tx reduces its rate
as the number of successive successful transmissions
increases. When the Tx hops, it always uses a fixed
rate, which is the maximum available rate (RM ) if
ry(0, si) is decreasing in the index i.

A typical example of the Tx optimal policy is shown
in Figure 5 for K = 6,M = 2, and K∗ = 4. Once
jammed, the Tx hops to channel f1 in the first time
slot, and starts communicating over f1 using the
highest rate, R2. In the second and third slots, the Tx
stays on f1, but reduces its rate to R1. In the fourth
slot, it reduces its rate further to R0. After K∗ = 4
slots, the Tx hops to channel f3 and stays on it for
only three slots because it gets jammed after that (in
slot 8). Then, in the ninth slot, the Tx hops again and
tunes to channel f2 using the highest rate, and so on.

Note that since the Tx hops once it reaches state
K∗, it never enters into a state larger than K∗. Thus,
if K∗ < K, the resulting Markov chain is reducible.

Corollary 1: The threshold K∗ is decreasing in L,
and increasing in both K and C.

7. This assumption is made only to establish the structure of the
policy analytically. Our simulations show that the same property
holds in general.

Fig. 5: Example of the Tx optimal policy (K = 6,M =
2, and K∗ = 4).

Proof: The proof follows by noting that for any
x′ > x, Q(x′, si) − Q(x, si) is increasing in L and
decreasing in K,∀i ∈ M. Moreover, Q(x, hi) is de-
creasing in C,∀i ∈ M, x ∈ X . This verifies that K∗ is
increasing in C.

Next, we return to the study of the Markov game.

5.3 Equilibrium of the Markov Game

In this section, we compute the constrained NE of the
zero-sum Markov game and study its properties. For
a given defense strategy y ∈ Js, the following linear
program solves the recursive equations in (19) [36][Sec
2.3]:

minimize
1

N

∑
x

V (x)

subject to: V (x) ≥ ry(x, a) + δ
∑
x′∈X

Py(x′|x, a)V (x′),

∀x ∈ X, a ∈ A.
(20)

From Theorem 1, we know that the zero-sum
Markov game has a constrained NE. We use a non-
linear version of the above program to compute
the equilibria. First, we establish the required nota-
tion. Let R(x) = [r(x, a, p)]a∈A,p∈PJ

and T (x, V ) =
[
∑
x′ P (x′|x, a, p)V (x′)]a∈A,p∈PJ

be the reward and
transition probability matrices, respectively. Consider
the following nonlinear program:

minimize
1

N

∑
x

{
V1(x) + V2(x)

}
subject to: V1(x)1 ≥ R(x)y + δT (x, V1)y,∀x ∈ X

V2(x)1 ≥ −f(x)R(x) + δf(x)T (x, V2),

∀x ∈ X
PJy

T ≤ Pavg,∀x ∈ X
(21)

where 1 denotes a vector of all ones of size M when
the state is J or K, and of size 2M for all other states.

Theorem 2: Let (V ∗1 (x), V ∗2 (x), f∗(x),y∗) denote
the minimum of the nonlinear program (21). Then,
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Fig. 6: Example illustrating the Tx-Rx rendezvous process.

(f∗(x),y∗) is the optimal constrained NE of the game.
Proof: The nonlinear program (21) is the same as

the one in [36][Sec. 3.7] with the additional average-
power constraint on the Jx’s strategy. The proof fol-
lows from [36][Th. 3.7.2].

Note that although the optimal strategy of the Tx
for a given Jx’s strategy is deterministic, the equilib-
rium strategy may not be deterministic. The strategy
y∗ is the same for all x ∈ X as the Jx does not know
the state. We know from the previous subsection
that the optimal Tx’s strategy against any given y is
deterministic. Therefore, at equilibrium, the strategy
of the Tx is deterministic.

Tx-Rx Rendezvous–As explained in the paper, the
Tx dynamically adjusts its FH sequence according to
its optimal anti-jamming strategy. In this case, how
does the Rx know the Tx’s channel in a given slot?

Initially, the Tx and Rx share a common PN se-
quence. The Tx follows this PN sequence. However,
it optimizes how many slots to stay in each channel
before switching to the next channel in the PN se-
quence. As stated in Proposition 1, the optimal policy
of the Tx is to stay on each channel K∗ slots as
long as it is not jammed. Once jammed, the Tx will
switch to a new channel. The Tx optimal policy is also
shared with the Rx. Therefore, the Rx will follow the
common PN sequence staying on each channel K∗

slots unless it is jammed, in this case it will switch to
the next channel. By knowing the initial PN sequence
and K∗, the Rx can induce the Tx’s channel in any
time slot, based on its jammed slots. The Tx conveys
the value of K∗ to the Rx along with the initial PN
sequence before start hopping from one channel to
another. The Rx can also obtain the value of K∗ by
solving the zero-sum Markov game between the Tx
and Jx. Figure 6 shows an example illustrating the
Tx-Rx channel synchronization (rendezvous) process.

6 PERFORMANCE EVALUATION

In this section, we study the performance of the joint
FH and RA scheme for various system parameters,

K, C, L, and Pavg. We use the set of rates adopted
by IEEE 802.11a [39], i.e., 6, 9, 12, 18, 24, 36, 48,
and 54 Mbps. Unless stated otherwise, we use the
following default parameter values: K = 4, L = 25
Mbps, C = 50 Mbps, m = 1, and Pavg/Pmax = 25/30.
The jamming and switching costs are interpreted as
throughput loss. Because of this, we represent L and
C in Mbps. We implement our game in MATLAB. The
optimal defense and attack strategies of the Tx and
Jx, respectively, are obtained by solving (21). The 95%
confidence intervals are shown in all the simulation
figures.

We compare the joint FH and RA scheme with the
FH scheme proposed in [21]. In [21], the Tx optimally
decides to hop or stay while fixing its transmission
rate. We implement two versions of the FH scheme
in [21]: one with a fixed transmission rate of 24 Mbps
and the other with a fixed rate of 54 Mbps. The
FH game in [21] is implemented in MATLAB. The
optimal defense and attack strategies of the Tx and Jx,
respectively, are obtained by solving a linear program
that is similar to (21). The difference is that the action
space of the FH game consists of two actions only: hop
and stay, whereas the action space of the joint FH and
RA scheme consists of 2N actions, as explained earlier.
The joint FH and RA scheme is compared with the FH
schemes based on the average throughput (in Mbps),
success rate, and the hop rate. Recall that in the RA
scheme, the Jx can force the Tx to always operate at
the lowest rate by maintaining the average jamming
power above a certain threshold.

6.1 Effect of the Number of Channels (K)

Figure 7 depicts the average throughput vs. K. The
joint scheme achieves a significant improvement in
the average throughput compared to the FH schemes.
This improvement reaches ∼ 15x when K = 3. The
improvement in the average throughput is due to
two factors. First, the increase in the success rate,
and accordingly the reduction in the jamming cost,
as shown in Figure 8. Second, a reduction in the hop
rate, hence a reduction in the switching cost, as shown
in Figure 9.

The higher success rate results from the fact that in
the joint scheme the Tx can evade the Jx by hopping to
a different channel and/or reducing its transmission
rate. Note from Figure 8 that the improvement in the
success rate is more significant when K is small, and
it decreases with K. As a result, the improvement in
the average throughput achieved by the joint scheme
reduces as K increases. The reason for this is that RA
plays a role in jamming avoidance only when both the
Tx and Jx are on the same channel. As K increases, the
likelihood that the two will select the same channel
decreases, hence the gain obtained by the added RA
capability is lower. As K increases, the success rates
of the FH schemes improve significantly, because of
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Fig. 7: Average throughput vs. K.
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Fig. 8: Success rate vs. K.
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Fig. 9: Hop rate vs. K.
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Fig. 10: Average throughput vs. C.
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Fig. 11: Success rate vs. C.
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Fig. 12: Hop rate vs. C.

the reduction in the probability that the Tx and Jx are
on the same channel. In contrast, the difference in the
success rate of the joint scheme when K varies from 3
to 9 is not significant. The reason is that even though
the probability that the Tx and Jx are on a common
channel increases as K decreases, the Tx uses its RA
capability to evade the Jx and keep its success rate
high.

Expectedly, the hop rate of the joint scheme is
smaller than that of the FH schemes. In the joint
scheme, in order to save the hop cost, the Tx tries
to evade the Jx by employing RA only (if it can),
hence reducing the hop rate as much as it can. The
hop rates of all schemes reduce as K increases since
the likelihood of the Tx and Jx meet on a common
channel decreases. The reduction in the hop rate of
the joint scheme as K increases causes the average
throughput to increase (recall that the success rate of
the joint scheme does not improve significantly with
K).

6.2 Effect of the Hop Cost (C)
The effect of C on the average throughput, the success
rate, and the hop rate is studied in Figures 10, 11,
and 12, respectively. The average throughput of the
joint scheme (FH schemes) is a nonincreasing (de-
creasing) function in C. We vary C between 6 Mbps
(which is the lowest transmission rate) and 78 Mbps

(which is close to 1.5 times the maximum transmission
rate). The improvement in the average throughput
achieved by the joint scheme reaches to ∼ 22x when
C = 75 Mbps. As can be seen from Figure 10, the
improvement in the average throughput achieved by
the joint scheme is more significant when C is suffi-
ciently large. Figure 12 shows that when C increases,
the hop rate of all the schemes decreases. As a result,
the success rate of the FH schemes decreases (see
Figure 11). In contrast, when the hop rate of the
joint scheme decreases (due to the increase in C),
the success rate remains the same or increases, as
shown in Figure 11. This is because of the added RA
capability in the joint scheme. When C is significantly
large (> 75 Mbps in Figures 10-12), the Tx tends to
avoid jamming by reducing its transmission rate more
often than switching to another channel, hence the
hop rate reduces, the average throughput decreases,
but the success rate increases.

When C = 6 Mbps which is significantly smaller
than L = 25 Mbps, the hop rate of all the schemes
is 100% and the maximum average throughput is
attained.

6.3 Effect of the Jamming Cost (L)
Figures 13, 14, and 15 depict the average throughput,
the success rate, and the hop rate of all the schemes
vs. L when C = 50 Mbps. The average throughput
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Fig. 13: Average throughput vs. L
(C = 50 Mbps).
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Fig. 14: Success rate vs. L (C = 50
Mbps).
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Fig. 15: Hop rate vs. L (C = 50 Mbps).

of all the schemes decreases with L. Indeed, the FH
scheme with a rate fixed at 24 Mbps results in zero
throughput. When L = 6 Mbps which is significantly
smaller than C = 50 Mbps, the hop rate of the two
FH schemes is ∼ 40%. When L increases, the hop
rate of the FH schemes increases, and as a result
the success rate of the FH schemes increases (see
Figures 14 and 15). Although the success rate of the
FH schemes improves with L, the average throughput
decreases due to the increase in the hopping cost. In
contrast to the FH schemes, when L increases the hop
rate of the joint scheme decreases. This is due to the
large value of C, which leads the Tx to use its RA
capability for jamming mitigation instead of hopping
(recall from Figure 12 that the hop rate decreases with
C). As L increases, the Tx tends to use low rates
more often to avoid jamming. As a result, the average
throughput of the joint scheme reduces with L, but
the jamming probability also reduces, which causes
the hop rate to decrease.

6.4 Effect of the Average Jamming Power (Pavg)

We study the effect of Pavg in Figures 16, 17, and 18
with Pmax = 30. For each of the two FH schemes,
there is a threshold on Pavg that depends on the
scheme. When Pavg is less than this threshold, the
success rate decreases and the hop rate increases with
Pavg. When Pavg exceeds this threshold, the success
and hop rates become almost unaffected by Pavg. The
reason is that for each fixed transmission rate there is
a corresponding average jamming power that enables
the Jx to successfully jam the Tx when they are on
the same channel. Increasing the average jamming
power beyond this threshold does not change the
performance of the FH scheme. A similar behavior
is also observed for the joint scheme.

Note that when Pavg is very small, the Tx can
successfully transmit at high rates even when it is
on the same channel as the Jx. Therefore, the gain
achieved by the added RA capability is less significant
compared to the case when Pavg is large.

6.5 Effect of the Number of Jammed Channels per
Slot (m)

For a given K, increasing m decreases the length of
the sweep cycle. Increasing m a times is equivalent
to decreasing K a times and keeping m = 1, e.g.,
K = 8 and m = 4 is equivalent to K = 2 and
m = 1. Therefore, increasing m has the same impact
as decreasing K for the case when m = 1.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we analyzed a joint FH and RA defense
scheme against a reactive-sweep Jx. We modeled the
interactions between the Tx and Jx as a zero-sum
Markov game, and derived the optimal equilibrium
defense strategy against the worst attack strategy. Our
numerical results show that the new scheme provides
significant improvements in the average throughput
and jamming resiliency, especially when the number
of channels is small and/or the hopping cost is high.
For instance, when the number of channels is between
3 and 6: (i) the throughput gain achieved by the new
scheme ranges from ∼ 15x to ∼ 1.37x, and (ii) the
improvement in the success rate varies from ∼ 1.7x
to ∼ 1.13x.

As a future research, we aim to study the case when
the Jx can also listen to the Tx’s messages. In this
case, the Jx can adopt the following strategy. It senses
the channel for a short period at the beginning of
each time slot and emits power only if a Tx activity
is detected; otherwise, it does not emit any power.
Because the Jx conserves power by not attacking the
Tx in each time slot, it can use all of its power when it
detects the Tx in a slot and cause maximum damage
(i.e., the Jx emits either no power or emits maximum
power depending on whether it detects Tx activity in
a slot).

We also plan to analyze the joint FH and RA game
when carrier aggregation is enabled (i.e., the Tx can
communicate over multiple channels in each time
slot). In this case, in addition to optimally deciding to
hop or stay and which transmission rate to use, the Tx
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Fig. 16: Average throughput vs. Pavg.
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Fig. 17: Success rate vs. Pavg.
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Fig. 18: Hop rate vs. Pavg.

needs to optimally select the number of channels to be
aggregated in each slot. Aggregating more channels
leads to higher rates if transmission is successful, but
also increases the probability of being hit by the sweep
Jx.
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