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Abstract—In this paper, we explore the economic aspects of
routing/relaying in a profit-driven opportunistic spectrum access
(OSA) network. In this network, primary users lease their
licensed spectrum to secondary radio (SR) providers, who in
turn provide opportunistic routing/relaying service to end users
if this service is profitable, i.e., if the payment offered by the end
user (a.k.a the price) exceeds the SR’s relaying spectrum cost.
This cost is considered private information known only to SRs.
Therefore, the end user has to rely on costs reported by SRs
to determine his routing and payment strategy. The challenge
comes from the selfish nature of SRs; an SR may exaggerate
his cost to achieve greater profit. To give incentive to an SR
to report the true cost, the payment must typically be higher
than the actual cost. However, from the end user’s perspective,
“overpayment” should be avoided as much as possible. So we
are interested in the ‘“optimal” route selection and payment
determination mechanism that minimizes the price of the selected
route while simultaneously guaranteeing truthful cost reporting
by SRs. We formulate this problem as finding the least-priced
path (LPP), and we investigate it without and with link capacity
constraints. In the former case, polynomial-time algorithm is
developed to find LPP and calculate its truthful price. In the
latter case, we show that calculating the truthful price of the
LPP is in general computationally infeasible. Consequently, we
consider a sub-optimal but computationally feasible approximate
solution, which we refer to as truthful low-priced path (LOPP)
routing. A polynomial-time algorithm is proposed to find the
LOPP and efficiently calculate its truthful price. A payment
materialization algorithm is also developed to guarantee truthful
capacity reporting by SRs. The effectiveness of our algorithms in
terms of price saving is verified through extensive simulations.

Index Terms—Truthful mechanism design, opportunistic spec-
trum access, least-priced-path routing.

I. INTRODUCTION
A. Motivation

The benefit of opportunistic spectrum access (OSA) as a
means of improving spectrum utilization is now well recog-
nized [20]. OSA aims at opening under-utilized portions of
the licensed spectrum for secondary re-use, provided that the
transmissions of secondary radios (SRs) do not cause harmful
interference to the communications of primary users (PUs).

Naturally, profit is a critical driving force behind the realiza-
tion of OSA. Under the assumption of economically rational
users, a PU has interest in opening his idle spectrum for
secondary re-use only if he can make a profit from such an
action. To this end, an SR is typically charged for leasing the
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spectrum on a temporary basis. Such economic consideration
has been reflected in recent OSA studies. For example, the
spectrum auctions in [23] and [8] considered the situation
where SRs buy spectrum through a bidding process. The
spectrum-leasing architecture in [14] requires SRs to subscribe
to (and pay for) the spectrum-status information broadcasted
by a spectrum server. The IEEE 802.22 WRAN standard is
based on an infrastructure-type architecture, which by design is
suitable for implementing fee-based OSA services. In addition
to providing incentive to PUs, profit is also an important factor
for SR service providers, who would be willing to transport
the traffic of other users if they can make a profit, i.e., if the
payment received by the servicing node (a.k.a, the price of the
service) exceeds the spectrum cost paid by the SR.

In contrast to previous works that studied the cost aspects
of acquiring spectrum, in this paper we study its “end system”
perspective and consider the implication of the for-profit nature
of SRs. We focus on the economic aspects of the routing
problem in a profit-driven OSA network. Specifically, we
consider the situation where an end user wishes to purchase
a route to a destination. Intermediate SRs along this route are
willing to relay the traffic from this source for a fee. The
problem for the source is to decide the cheapest route, i.e.,
the one that minimizes the source’s total payment to relaying
nodes (equivalently, the price of the route). We refer to this
problem as the least-priced path (LPP) problem. Note that
even though we assume the source pays for the route, the
problem does not lose its generality if the destination is the
one who makes the payment.

At a first glance, the LPP problem may seem easy to
solve using the following naive method. The source would
ask intermediate SRs to report their costs. The source would
then choose the best path to the destination with respect to
the reported cost. Each SR along the selected path would be
paid the equivalent of its reported cost. The problem with
this method is that intermediate SRs may exaggerate their
claimed costs for the purpose of getting higher profits. This
is especially true when intermediate SRs belong to a different
administrative domain than the source, and thus are inclined
to act selfishly to maximize their profit. As a result, the source
could end up paying an unnecessarily high price for the route.

The above selfish behavior has been addressed in the
literature under a different setup, namely, finding the least-cost
path (LCP) (e.g., see [13], [7], [6], [17]). The basic idea in the
LCP algorithm is to design a “truthful” payment mechanism,
which guarantees that mis-claiming the cost will not increase



the payment made to the relaying node. As a result, such a
node has no incentive to exaggerate its true cost. The LCP can
be subsequently constructed based on the reported costs.

In contrast to the LCP problem, the LPP problem studied in
this paper takes into account the following three new aspects
that arise in the OSA context. First, instead of minimizing
the cost of the route (as reported by relay nodes), we aim
at minimizing its price (payment made by end user). This
is more attractive to an end user, because price is the actual
expense the end user has to pay. As will become clear shortly,
under the truthfulness requirement, there is no straightforward
conversion between these two objectives; an LCP may not
have the least price. Hence, a new formulation is required for
the LPP problem.

Second, in contrast to the LCP formulation, where the cost
of an SR node is constant, in our setup cost is modeled
as a random variable. The node cost in OSA represents
the monetary value the SR node pays to the PU. Such a
value changes with spectrum supply/demand dynamics in the
vicinity of a node. When supply is tight, an SR will have to pay
more to access the spectrum. To cope with these variations,
we consider a randomized routing strategy, which adapts to
the dynamics of the node cost, with the goal of minimizing
the expected price of the route.

Third, when constructing a route, we consider the transport
capacity limit of each node. By being restricted to a secondary
role, an SR cannot guarantee it can always acquire the required
amount of spectrum. Therefore, an end-to-end flow may have
to be split into multiple sub-flows, leading to multi-path rout-
ing. This is in contrast to the single-path situation considered
in the LCP problem, where no capacity constraint is imposed
on relaying nodes, so a flow can always be accommodated by
a single path.

B. Contributions and Paper Organization

In this paper, we model truthful LPP routing as a game
theoretic mechanism design problem [13]. We provide a uni-
fied formulation and solutions that address the aforementioned
three considerations. Our investigation is divided into two
parts. In the first part, we obtain the LPP and its truthful price
without imposing a node-capacity constraint. This simplified
formulation applies to the scenario where the rate demand is
relatively low, such that relaying SRs can always support it. In
the second part, we consider the problem under a given source
rate demand and given capacity constraints at intermediate
nodes. We derive the analytical solution for the LPP and its
truthful payment. We show that the LPP in this case is a multi-
path route, and in general calculating the truthful payments is
computationally infeasible. Consequently, we consider a sub-
optimal but computationally feasible version of the problem,
namely, truthful low-priced path (LOPP) routing. The price of
the LOPP is not necessarily the lowest, but is still significantly
lower than the price of the path found by other truthful
routing algorithms such as LCP. More importantly, the truthful
payment under the LOPP algorithm can be efficiently com-
puted. Our LOPP construction is the first truthful multi-path
routing algorithm in the literature that accounts for general

non-node-disjoint routes. When the routes under consideration
are node-disjoint, the LOPP algorithm returns the truthful LPP.
Under a node-capacity constraint, capacity information must
be collected. So we develop a payment enforcement algorithm
that guarantees truthful capacity reporting by relay nodes.
The complete LOPP routing mechanism guarantees that mis-
reporting the node’s cost and capacity does not lead to a higher
profit for that node.

Our work extends Myerson’s optimal auction problem [11],
in which bidders correspond to paths in our LPP formulation.
In Myerson’s problem, bidders are independent; no matter how
a bidder changes his bid, he cannot change other bidders’
bids. In contrast, in our LPP problem, paths need not be node-
disjoint. As a result, when a node that belongs to multiple paths
changes its claimed cost, the claimed costs of all involved
paths will also change. In other words, the players in our
problem are dependent. Therefore, the results of Myerson’s
work cannot be directly applied to our problem.

The remainder of this paper is organized as follows. Related
work is reviewed in Section II. We formulate the LPP problem
in Section III. The problem is investigated without and with
node-capacity constraints in Sections IV and V, respectively.
Simulation results are presented in Section VI. The paper is
concluded in Section VII.

II. RELATED WORK

In [5] the authors studied the minimization of the expected
price of a single path under no node capacity constraint. Our
results in Section IV are compatible with theirs. The main
difference is that, by definition, their setup targets only single-
path routes, whereas ours starts from a more general setting
that allows for multi-path routing. This change in formulation
is nontrivial, because now we need to explicitly account for the
inter-dependence between paths. We formally prove that in the
absence of capacity constraints, the LPP reduces to a single
path. Our key contribution here is in proving that the outcome
of the presented algorithm is not only optimal among the set of
single paths, but also optimal among all possible combinations
of paths. As to the second part of our work, i.e., LPP under
node capacity constraints, to the best of our knowledge, this
aspect has not been addressed before.

Aside from [5], other related works on truthful routing
focused on the LCP problem rather than the LPP problem. The
LCP problem was first introduced by Nisan and Ronen [13],
who solved the truthful unicast LCP routing problem by apply-
ing the celebrated Vickrey-Clarke-Groves (VCG) mechanism.
In [13], the cost of an agent (a node or an edge) is used as the
agent’s weight in the graph. The payment p® to an agent e is
0 if e is not on the LCP and p® = dg|e=o0 — dg|e—o if € is On
that path. Here, dg|c—o is the cost of the LCP on the graph
that excludes e, and dg|.—¢ is the cost of the LCP when e is
included and its cost is zero.

Several follow-up works extended the basic VCG algorithm
[13] to various networking environments. This includes the ad
hoc-VCG [1], the VCG-based BGP [6], the multicast version
of VCG [18], and more recently VCG for opportunistic routing
[19]. The work in [9] formulated the multi-path LCP problem



but did not provide a solution. The work in [15] gave initial
results for this problem by only considering the special case
when all paths in the graph are disjoint. Some works, e.g., [7],
focused on complexity issues in the VCG payment calculation.
Other works, e.g., [22][16][17], went beyond the routing layer
and encompassed a cross-layer methodology in studying the
LCP problem.

The overpayment issue in VCG-based LCP routing was
first noticed by Archer and Tardos [2]. They investigated
the frugal path problem (FPP), which aims at designing
a mechanism that selects a path and induces truthful cost
revelation, but without paying high price. They also showed
that no reasonable mechanism can always avoid paying a high
premium to induce truthtelling. Subsequent works on FPP,
e.g., [6] [4], provided bounds on the route price for general
truthful routing mechanisms. Rather than following a bounding
approach, the LPP problem addressed in this paper differs from
FPP in that it explicitly minimizes the price of the route in a
given OSA network.

When truthfulness is not a concern, various pricing mecha-
nisms have been studied with the goal of optimizing the social
welfare of a wireless ad hoc network. For example, the authors
in [10] proposed a centralized two-fold pricing mechanism
that accounts for the relay and interference between nodes in
routing, with the purpose of maximizing the aggregate net-
work utility. The authors in [12] proposed distributed pricing
algorithms to achieve the same goal. they also studied the
problem of balancing profits among nodes by optimizing a
profit fairness metric. In all these works, it is assumed that a
node truthfully reports information to the algorithm.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Preliminaries

The LPP problem is well suited for analysis by means
of mechanism design, a branch of game theory. We start by
briefly reviewing a few concepts from mechanism design. We
then describe our model and formulate the problem using
mechanism design’s terminology.

A mechanism design problem considers a game of n agents,
each with his own strategy set. Each agent ¢, 1 < ¢ < n, has
some private information c¢; (known only to agent 7), called its
true rype. We consider the direct revelation strategy, in which
agents simultaneously report their types to the mechanism.
Such a strategy is simple to implement in practice and its
communication overhead is small, making it scalable for large
networks. Denote the reported type of agent ¢ by ¢; (¢; may
be different from c¢;) and the vector of reported types from all
agents as ¢ = (¢1,...,C,). The mechanism takes C as input
and computes a response X(¢) = (z1(€),...,z,(€)) and a
payment to agents p(€) = (p1(€),...,pn(€)). The response
X(€) is the action each agent is going to take, given the input
c. Given X and the type c;, agent i’s cost function is decided
by a real-valued function 9;(c;, X). Accordingly, agent i’s
profit for reporting ¢ is given by U; = p;(€) — 94(cs, X).
An agent is said to be rational if his reported ¢; maximizes
his profit.

The main task of a mechanism design problem is to de-
termine the functions X(€) and p(€) that maximize some
social interest (e.g., social welfare) of the system. Usually,
the following properties are desired in the mechanism:

1) Incentive compatible (IC): A mechanism is IC if each
rational agent maximizes his profit when reporting his
true type c;.

2) Individually rational (IR): A mechanism is IR if each
agent’s profit for participating in the game is nonnegative.

When a mechanism is both IC and IR, we say it is truthful.

B. Network Model and Problem Formulation

We consider an OSA network whose topology is defined by
a directed graph G = (V, E), where V and E are the set of SR
nodes and the set of directed links between SRs, respectively.
SR nodes correspond to agents in the mechanism design
framework. We assume there is no collusion between SRs,
i.e., SRs react independently (no cooperation and information
exchange between SRs) when bidding for PU spectrum and
when providing service to end users. Such a scenario happens,
for example, when SRs belong to different service providers.
Each SR node j in V' can access b; amount of spectrum
by paying a cost ¢; to the PU for each transmitted packet.
We do not make any assumption on the structure of b; (e.g.,
deterministic or random). Our algorithm requires only the
instantaneous value (sample) of b; in the current session.
The cost c; results from, say, winning a bid in a spectrum
auction or an agreed upon rent in a spectrum lease, and
thus is considered private information (i.e., the true type),
only known to node j. Because c; depends on the spectrum
supply/demand dynamics around node j, it is modeled as
a random variable. We assume that {¢; : j € V} are
independent. This assumption is supported by the location-
dependent nature of spectrum supply/demand dynamics, and
is reasonable when there is no collusion between SRs.

Now consider a traffic flow that originates from a source
node s and terminates at a destination node d. The flow lasts
for multiple sessions. Let n = |V —{s, d}| (|.| is the cardinality
of a set), m = |FE|, and label the nodes in V — {s,d} as
7 = 1,...,n. Let the set of all possible paths from s to d
be R,y Let N = |Rsq|- Note that the enumeration of paths
from s to d is intended only for the problem formulation.
Our final algorithms do not require such enumeration. The
routing mechanism operates on a session-by-session basis. At
the beginning of a session, each node j in V reports a cost
¢; to the routing mechanism. A truthful mechanism should
guarantee that ¢; = ¢;, i.e., the mechanism must satisfy the
IC and IR constraints. We will formulate these constraints after
we finish describing the general operation of the mechanism.

The mechanism takes as input the reported costs ¢ =
(¢1,...,¢yn) from the nodes in V' — {s,d}, and computes an
outcome consisting of a routing vector X = (x1,...,2n)
and a payment vector p = (p1, ..., pn). In general, we allow
multi-path routing. So an element in X, say x;, 1 <i < N,
represents the fraction of traffic that will be carried over path
i in Ryq during the current session, and p;, 1 < j < n, is
the payment to node j for every packet delivered by paths in




R,q. Because z; and p; are outputs of the mechanism, we
write them as functions of the reported costs, i.e., x; o x;(€)
and Dj “ pj (6)

In practice, the mechanism can be executed either by the
end user or by a centralized server. In the former case, the
source node is responsible for collecting cost reports from
individual SRs and computing the path vector and payments.
Such an implementation is suitable for an end user of sufficient
power/computation capability. A centralized server implemen-
tation is more appropriate for resource-constrained users. To
simplify the presentation, in our subsequent analysis we use
the notation in Table I.

We stick to the conventional economics approach of a
Bayesian optimal mechanism design and assume that the
probability density function (p.d.f.) of c¢;, denoted by f;, is
known to the “mechanism”, i.e., the entity that computes the
routing and payment vectors and all the nodes in V. Let the
domain of f; be D; o [vj,w;], where v; > 0, w; > 0, and
v; < wj. In practice, for a truthful mechanism, f; and D; can
be constructed based on historical data of reported costs. In
our analysis, we assume the mechanism has perfect knowledge
of f;, but we relax this assumption in our simulations. We
further assume that ¢; does not change during a session, but
may change from one session to another. Here, a session
represents continuous transmission of a burst of packets. For
two nodes j and k, f; and f, are independent but not
necessarily identical. This assumption captures the fact that in
an OSA system, different nodes may experience heterogeneous
spectrum availabilities, and thus their costs are stochastically
non-identical. We assume that interference has been taken care
of by the underlying spectrum allocation mechanism, so that
interfering nodes operate over different frequency channels.
This assumption is commonly supported in spectrum auction
and leasing mechanisms, e.g., the algorithm in [23] takes as
input the interference graph to avoid selling a channel to two
nodes that interfere with each other. We also assume that even
though a node is only allowed to transmit over channels it has
acquired, it can tune to any channel for reception.

Even though several source-destination flows may exist in
the network, these flows join the network sequentially. Accord-
ingly, our mechanism considers source-destination pairs, one
at a time. In this case, for a new incoming flow, b; represents
the residual spectrum at node j, i.e., the total idle spectrum
available to SR j minus the spectrum that has been allocated
to ongoing flows that are traversing through node j.

The truthful LPP routing problem is formulated as follows.
The objective is to minimize the expected price that s needs
to pay for each packet it sends in a session, i.e.,

minimize x p) FS(X,p)d:Ef/D Z p;(€)f(€)de
JE€V\{s,d}
(1

subject to the following constraints:

Incentive Compatibility (IC) Constraint: This condition
motivates a rational node j to report its true cost to the
mechanism, i.e., it ensures that ¢; = c¢;. The basic idea is
to design X and p in such a way that, if a number z € D;

notation definition
C_j (cl,...,cj,l,cj+1,...,cn)
(Z,ij) (Cl,...,Cj717z7cj+17...7cn)
‘(",7]' (617”~7Ej7175j+1,---76n)
(Z,éfj) (51,...,&j71,2,5]’+1,...,En)
D U1<k<n,k jDk
D U1<k<7LDk
ffj(éfj) H1<k<nk jfk(ék)
f(E) H1<k<n fk(ék)
de_; déy ...dé;_1dE4q ... den
dc déy .. .dcn
TABLE I

NOTATION USED IN THE ANALYSIS.

is used as the unit spectrum cost to calculate node j’s profit,
ie., ¢; = z, then reporting ¢; = 2/, where 2/ € D, and
Zz' # 2z, does not lead to higher profit for node j than
reporting ¢; = z. This requirement is met for Vz and 2’ € D,
and Vj € V\{s,d}. Mathematically, the IC constraint is
formulated as follows

U;j(X,p,2)

D

pi(z,8-5) =z Y wilz &) | £;(E-5)de
- —

- / (e &) =2 D wildey)| £(E-)de
P | -~
for Vz,Vz' € D;,Vj € V\{s,d} )

where Rg{i) is the subset of paths in R,q that traverse node
7. In (2), the L.H.S. of the inequality is the expected profit
node j receives for each packet delivered over the route when
it reports ¢; = z, and the R.H.S. is the node’s profit when
it reports ¢; = z’. Because a mechanism that satisfies the
IC constraint (2) leads to ¢; = ¢; for Vj € V\{s,d}, the
notations c; and ¢; become inter-changeable. Our subsequent
presentation will be based on ¢;’s only, because they are the
actual inputs to the mechanism.

Individual Rationality Constraint: This constraint requires
that node j participates in packet relaying only if its expected
profit is nonnegative, i.e.,

UJ<X7P7éJ) >0 Vje V\{Svd} 3

Multi-path Constraint: This constraint says that the sum of
the fractions of traffic carried over various paths must equal
to the total traffic volume, i.e.,

N
sz(é) =1 “4)
i—1

Node Capacity Constraint: The aggregate traffic of the sub-
flows that traverse the same node should not exceed the node’s
capacity, i.e.,

Y z@R<b VeV )
ieRY)

where R is the flow rate demand.



Note that in the above formulation, the node cost is defined
for each packet relayed by that node, whereas payment, price,
and profit are with respect to each packet delivered over the
(multi-path) route. Hereafter, we use the notation ¢ and j
to refer to a path and a node, respectively, unless indicated
otherwise.

IV. LPP WITHOUT NODE-CAPACITY CONSTRAINTS

The main difficulty in solving the LPP problem is that the
paths between s and d may not be node-disjoint. Therefore, the
traffic volumes carried by different nodes are not independent.
This dependence, which appears in the IC and the node-
capacity constraints, prevents us from directly using Myerson’s
optimal auction theory [11]. In this section, we first consider a
simplified version of the LPP formulation, in which we ignore
the node-capacity constraint in (5). We refer to this problem
as the simplified LPP problem. The resulting mechanism will
still be truthful, because the IC and IR constraints are still
being accounted for.

Our analysis of the simplified LPP problem proceeds as
follows. Consider the IC constraint in (2). For node j, the
fraction of traffic it expects to relay given its reported cost ¢;
can be calculated as

2

Q)= [ n@fE ). ©
7 ierY)

D_.

Based on Q;(¢;), we have the following lemma.

Lemma 1: The IC constraint in (2) is equivalent to satisfying

both of the following two conditions:

(1) Monotonicity: For V&\") and & € D;, if &) > &), then

Q;(&") < Qs(&?);

) U;(X,p, &) = [57 Qi(r)dr; + Uj(X, p,w;), V¢; € D;.
The proof of Lemma 1 is provided in Appendix A. Based on

Lemma 1, the LPP problem without node-capacity constraints

can be re-formulated as follows.

Lemma 2: The optimal route vector X is the solution to the

following optimization problem:

minimize 37, i, [p |:éj + %} ZieRi{} z;(€)f(c)de
s.t.
ZN 1 Z‘L( ) =1 (7)

where Fj(¢;) f fj(7j)drj is the c.d.f. of ¢;. In addition,
the truthful payment to each node is given by p;(¢) =
¢ ZieRg x;(¢) + f I ZZeR(]) zi(1j,8_;)drj, for 1 < j <
n.

The proof of Lemma 2 is provided in Appendix B. Note that
the IC and IR constraints are now embodied in the objective
function and the specific form of the truthful payment function
presented in Lemma 2. According to Lemma 2, we can use the
formulation in (7) to solve the simplified LPP problem. Let

S\ de L R
h(@) & S icjzn {CJ + ﬁ > cR) Ti (€). An inspection
of (7) shows that this formulation actually minimizes the
expected value of h(€), given the distribution f(€). A simple
probabilistic argument says that the expected value will be
minimized if h(€) is minimized over every point of €. This

gives rise to the following lemma, which reduces our problem
from a randomized setup to a deterministic one.

Lemma 3: Given the reported cost vector ¢, the LPP problem
can be expressed as follows:

minimize  } <, [CJ + 7 ((c]))] ZiERi{; ;(€)

oYY n@ =1

and the truthful payment is given by

pi@=¢ > 331'(5)+/ > @il y)dr,

. Ci N
icRY) 7 ierY)

wj

I<j<n. 9

Regarding the solution of (8), we have the following results.
Theorem 1: In the simplified LPP problem, for a given ¢, the
optimal route contains only one path, which is given by

3}

2(C) =arg min ( (10)

()
VP, ede epl

where PS(;) denotes the ith path in Ryy, 1 < 4 < N. Thus,
the optimal routing vector is X°(¢) = (0,...,0,1,0,...,0),
where the non-zero element corresponds to the optimal path
P2,

Proof: We rewrite h(€) according to the routes in R4:

3]

(1)
1<1<N

Let & = {~ I;((C])) Note that for each j, 1 < j < N, ¢,
is a constant for a glven ¢j. Accordingly, for each path 7, the
term W; =
given ¢, problem (8) becomes a linear program (LP) of the

form: N
an) D=1 Witi
s.t. (12)
Zf\il T, = 1.

It is straightforward to see that the optimal solution to the
above LP is X° = (0,...,0,1,0,...,0), where the index of
the non-zero element is ° = arg minj <;,< y{W;}. This proves
Theorem 1. =
Theorem 1 suggests the following algorithm for computing
the LPP and the related payments. For a given ¢, we use
&;(¢;) as a weight for node j. The LPP is simply the shortest
path from s to d wrt ;. If more than one path have
the same shortest length, the algorithm breaks the tie by
arbitrarily selecting one of them. Because &; is a function
of ¢;, it may also be considered as the virtual cost of node
7. Because now the optimal route contains only one path, the
payment can be significantly simplified: Equation (9) shows
that p;(¢) = 0 if node j is not included in the shortest
path. Otherwise, p;(€) = min(wj, ¢;), where ¢, is the “cutoff
cost” of node j, beyond which node j will not be included
in the LPP. This cutoff cost can be computed in the virtual
cost domain. Specifically, in the virtual cost domain, let ¢

def (Z]e PO &; ) is also a constant. Therefore, for a

minimize,, ...



denote the difference in costs between the least-cost path that
traverses node j and the least-cost path that does not traverse
node j. If the virtual cost of node j increases from &;(¢;)
to &;(&;) + ¢, node j will not be included in the LPP. So
¢ = 5;1@ +&;(¢;)), where 5;1 denotes the inverse of the
function ¢;. Note that because there is a —¢;(¢;) term in ¢,
C+¢,(¢;) is independent of £;(¢;) and thus is also independent
of ¢;. As a result, the payment received by node j is not
related to ¢;, and hence mis-reporting the cost of node j does
not lead to greater profit for this node. Under the rational-user
assumption, this means that an SR user will always report his
true cost. A pseudo-code description of the above process is
given in Algorithm 1.
Algorithm 1 Computing the LPP and payments without node-
capacity constraints
INPUT: & = (&1, ...,¢0n)
OUTPUT: LPP and payments to nodes
: for 7 =1 ton do
€ < ¢ + HilE)
i< G TG
end for Y
LPP <« shortest path from s to d w.r.t. weights &;’s
minlength < length of(LPP)
payments(j) <0, Vj ¢ LPP
for all nodes j in LPP do
length_runnerup(j) < length of the shortest path that does
not traverse node j
virtual_cutof f_cost(j) <
minlength + &;
10:  payments(j) < min{f;l(virtual_cutoff_cost(j)), w;}
11: end for

A S ol e

N

length_runnerup(j) —

Theorem 2: The route selection and payment mechanism
given in Algorithm 1 is truthful and minimizes the expected
price of the resulting route.

The validity of Theorem 2 is straightforward based on our
previous discussion. In Algorithm 1, the computation of the
LPP (line 4) involves finding a shortest path. Because all node
weights are non-negative, this can be done using Dijkstra’s
algorithm in O(m + nlogn) time. It is easy to see that the
worst-case running time of Algorithm 1 is O(mn +n?logn).

V. LPP WiITH NODE-CAPACITY CONSTRAINTS
A. Optimal Route Selection and Truthful Payment Calculation

Based on (12), the inclusion of node-capacity constraints
leads to the following formulation for the optimal route
selection:

. N
minimize,, 2y} Dieq Wi

s.t. 13
RZiGRM(} T; < bj,Vj eV.

An inspection of (13) reveals that it is an LP. However, the
main challenge in solving this problem using a conventional
LP solver is that, in practice it is computationally infeasible
to enumerate all the paths from s to d. So it is difficult to
explicitly express the formulation (13). This hinders direct
application of an LP solver.

Note that (13) belongs to the class of min-cost flow
problems, but with non-negative nodal weights/capacities. So,

instead of directly solving (13), we solve the following equiv-
alent flow problem to minimize the same objective function:

1) Objective function:

Do D &

JEV\{s,d} keV

MIMMIZE ) Ve, €E, jEV\{s,d}, kEV'}

(14)
2) Flow conservation constraint:
_17 .7 =S
o= Y =41, j=d (15)
kev keV 0, VjeV\{sd}
3) Node capacity constraint:
RY rjx <bj, VjeV\{sd} (16)
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where 1, denotes the amount of traffic carried over a directed
link e, from node j to node k, e;, € E (if a directed link
does not exist from node j to node k, then 7;; = 0). The flow
optimization is w.r.t. 7;3’s. It is easy to see that the above flow-
based optimization is equivalent to the optimization in (13): the
flow formulation minimizes the total virtual cost of delivering
traffic by optimizing the traffic carried by each link, while
(13) minimizes the same objective by optimizing the traffic
carried by each path. The optimization variables in these two
formulations are related through the relationship that the traffic
carried by a link is simply the summation of the traffic carried
by all the paths passing through this link. So the optimal traffic
allocation over paths in (13) also implies the optimal traffic
allocation over links in the flow formulation. Compared with
(13), the flow-based optimization (14) through (16) does not
require enumerating all possible paths from the source to the
destination. As a result, for a given graph G, the flow-based
LP can be explicitly formulated. The LPP can be obtained by
solving this LP using common LP solvers.

For the LPP with node-capacity constraints, the general
form of the optimal payment defined in (9) still applies. This
is because this general equation is solely decided by the IC
and IR constraints, and is not related to whether the node-
capacity constraint is present in the formulation. However, the
challenge in applying this equation comes from the fact that
(9) involves computing the integral of the traffic carried by a
node j over various reported costs ¢;. This integral requires
evaluating the amount of traffic passing through node j; at
every value of ¢;, as ¢; varies from the underlying reported
value to the upper bound w;. To exactly compute this integral,
one must solve an infinite number of flow problems, one
for each value of ¢;, which is computationally infeasible.
Furthermore, even if the relationship between the traffic carried
by node j and its reported cost ¢; is explicitly known in the
form of a function, say, w(éj), but the integration of 7 over ¢;
is not known analytically, in general one still has to rely on
numerical computations to calculate the approximate value of
the integral.

B. Truthful Low-Priced Path (LOPP)

When node capacity constraints are present, the compu-
tational challenges associated with determining the payments



under truthful LPP motivate us to consider a sub-optimal but
computationally feasible version of the problem, which we
refer to as truthful low-priced path (LOPP) routing. The price
of a LOPP may not be the lowest, but is still significantly
lower than the price of the truthful LCP. Keeping this setting
in mind, we propose Algorithm 2 to solve the optimization
problem in (13) approximately.

Algorithm 2 Computing a truthful LOPP under node-capacity

constraints

INPUT: & = (&1,...,0n)

OUTPUT: LOPP

: for j =1 ton do

S i 1C7))
& =G+ 3

end for

STEP 1: Find the shortest-path P* from s to d on the graph G

w.rt. &’s.

5: STEP 2: Find the bottleneck node j* on path P*. Allocate a
fraction of traffic bj« /R from the flow demand to this path.
Update the capacity of each node on P* by subtracting b=, the
portion that has been used by the underlying shortest path, from
its original capacity. Delete node j* from G, along with other
possible bottleneck nodes whose capacities become 0.

6: STEP 3: Repeat STEPs 1 and 2 until all the traffic demand of the
flow has been allocated or no additional shortest-path in STEP
1 can be found. In the former case, the sequence of paths found

B e

by the procedure along with the associated traffic allocation is
the LOPP. If the latter case happens, then a LOPP cannot be
found by the algorithm.

Algorithm 2 is equivalent to sorting the paths in Ry
increasingly according to their length W, (the total virtual
cost of the nodes on path 7) and then allocating traffic to paths
sequentially according to their ranking, until the traffic demand
is satisfied. Each path is allocated an amount of traffic up to
the capacity of its bottleneck node.

In general, the multi-path LOPP returned by Algorithm 2 is
sub-optimal in terms of its price. For the special case where
the routes under consideration are node-disjoint, Algorithm 2
actually finds the optimal solution to (13) (i.e., Algorithm 2
returns the LPP). For the general case, in each realization of
Algorithm 2, the difference in the virtual cost of the path (i.e.,
the objective function in (13)) between the LOPP and the LPP
can be evaluated by comparing the LOPP’s total virtual cost
with the result of the flow-based optimization (14). Although
the LOPP found by Algorithm 2, in general, does not have
the lowest price, our simulations show that, compared with
the path found by the LCP algorithm, the average truthful
price of the LOPP is significantly lower.

Algorithm 2 involves repetitive computation of several
shortest paths. Because all weights are non-negative, Dijkstra’s
algorithm can be used to find the shortest path in each iteration
in O(m + nlogn) time. It is straightforward to see that the
worst-case running time of Algorithm 2 is O(mn +n?logn).

C. Truthful Payment Calculation for LOPP

The traffic allocation vector computed by Algorithm 2,
(x9,...,2%), is an input to (9) to calculate node payments.
The key challenge in calculating these payments is in comput-
ing the integral term in the equation. Note that in Algorithm
2, xf is given only as an implicit function of ¢;, so it is not
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Fig. 1. Calculation of the virtual cutoff cost and threshold costs.

suitable to be used directly in the integration. To calculate the
payments, we need to take a closer look at the relationship
between node j’s traffic and its reported cost c;.

A re-examination of Algorithm 2 indicates that the traffic
carried by a node j presents a multi-threshold structure in
relation to ¢;. More specifically, for a node j that is included
in the LOPP route, the traffic it carries is the sum of the traffic
carried by the paths that are part of this route and that also
traverse node j. Let the set of these paths be Rijd) °. Algorithm
2 dictates that, given the capacity of each node, the optimal
traffic allocation across various paths, ie., (29,...,2%), is
fully decided by the ranking of the paths according to their
weights. As a result, when ¢; is increased, the traffic allocation
to the paths in Rg;)o will change only when the increment
of ¢; is significant enough to change path ranking. It is not
difficult to see that this is a mono-decreasing process, i.e.,
with an incr;aase in ¢;, the amount of traffic allocated to the

o

paths in jod always decreases after each change in ranking,

because their ranking only drops with a larger ¢;. Finally, no
traffic will be allocated to the paths in R\)°, since all traffic
has been allocated to the paths ranked before them. At this
point, ¢; corresponds to the cutoff cost of the simplified LPP
problem. The major difference here is that, before ¢; reaches
the cutoff cost, there exist multiple threshold costs, at which
a change in the ranking of the paths happens.

Such a multi-threshold structure largely simplifies our pay-
ment calculation, because the traffic allocation does not change
between two consecutive threshold costs. So, to compute the
integral in (9), we only need to find the threshold costs and
evaluate the traffic allocation at these particular points.

We use an example to illustrate the basic idea of computing
the threshold costs and cutoff cost for a node j that is part of
the LOPP. Consider the example on the left of Figure 1, where
paths in R, are labeled in the increasing order of their length
W;, defined based on the nodes’ virtual costs. Suppose paths
1 to 5 constitute the multi-path LOPP, constructed according
to Algorithm 2. Suppose paths 2 and 4 traverse node j. So,
with an increase in ¢;, the rankings of paths 2 and 4 drop
simultaneously (note that the ranking of path 4 remains always
below that of path 2, because W, — W5 is constant, as shown
in Figure 1). Now consider the situation shown on the right,
where the ranking of path 2 has dropped to a position that
no traffic will be allocated to it, but non-zero traffic is still
allocated to the path ranked before it, say path 7 in this
example. Note that at this time no traffic is allocated to path 4,
either. The underlying increment in §;, i.e., A&; = Wy — Wa,



Algorithm 3 Payment calculation for LOPP under node-
capacity constraints

INPUT: LOPP and € = (¢4, ...

OUTPUT: payments to nodes
1: for]—ltondq
<=6+ I ((56 ))

end for

for all j ¢ LOPP do
payments(j) < 0

end for

for all j € LOPP do
Construct RY)° from LPP
Exclude node j from G and call Algorithm 2 to find the LOPP
that does not include node j. I; < the length of the longest
path in this LOPP that has non-zero traffic allocation

10:  Rsq(l7) < {paths from s to d whose length is not longer

than 7} — R(J)O

7577«)

R A S

1: k< 1

12:  for each path r € Rmo and each path u € Rqq(l}) do

13: threshold virtual cost f( = max{length of path u —
length of path r,0} + &;

14: threshold cost c§k>* <« m1n(§§71>(§§k)*)7wj)

15: Call Algorithm 2 to evaluate the optimal traffic allocation

~(k)*x ~

X(C§ ) 7C—j)

16: k<=k+1

17:  end for

18: K <= number of threshold costs, including the cutoff cost

19:  Sort c( )*’s in an increasing order

0 payments(j) & & Y ien) ©il@, &)+

K- kt1)s o a(k)*
k:112 er\) $z(0< ) c,])( ; > _ ; ) )
21: end for

is the critical cutoff point for node j. If A§; < Wy — W,
traffic will still be allocated to path 2, so the traffic carried by
node j will be non-zero. But if A&; > Wy — W, no traffic
passes through node j. So, the virtual cost of node j at this
point, i.e., & + (W7 — W), is the node’s cutoff virtual cost. A
virtual threshold cost is simply the increment in §; that leads
to a change in the rankings of paths 2 or 4. As shown in
the middle of Figure 1, in total there are 7 such increments:
Wy —Wa, We — Wy, Wy = Wy, W3 — Wa, W5 — Wa, We — Wo,
and Wy — W5 (the last corresponds to the cutoff virtual cost).
The actual costs of node 7 can then be obtained from the
corresponding virtual costs by the inverse mapping fj_l

In the above calculations, the critical path 7 can be found
by excluding node j from the graph GG and calling Algorithm
2 to construct another LOPP that does not include node j. The
longest path in this LOPP that has non-zero traffic allocation
corresponds to the critical path 7 in the example. Note that
there is no need to consider the paths after this critical path,
because they will not receive any traffic allocation no matter
how big &; becomes. After getting the threshold costs and the
cutoff cost, Algorithm 2 can be called to evaluate the traffic
allocations at these particular costs. The above procedure for
calculating the payments is formalized in Algorithm 3, which
is executed after the LOPP is found by Algorithm 2.

The computational complexity of Algorithm 3 can be calcu-
lated as follows. For each node j that is included in the LOPP,
the algorithm needs to call Algorithm 2 K times to evaluate
the traffic allocation under the K threshold costs of node j. So
the computation time for calculating the payment for one node

is O(K (mn+n?logn)). The computation time for calculating
the payments for the entire LOPP is O(Kmn? + Kn3logn).
In practice, the value of K has a big impact on the overall
computational complexity. For each node j, K is at most the
product of the number of paths in R ] and the paths in
R;a(l}) (defined in line 10 of Algorlthm 3). Intuitively, this
implies that if the number of paths included in the LOPP is
large, then K will be very large. This scenario happens when
the source rate demand is much larger than a node capacity,
such that the flow has to be split among several sub-flows.

D. Examples

We illustrate the operation of Algorithms 2 and 3 using the
topology in Figure 2(a), where node s wants to send a flow
of rate 1 to node d. The underlying reported cost and capacity
of a node are shown in the figure in the form (¢;,b;). We
assume that the cost of a node is uniformly distributed over
[0,5]. So the virtual cost is given by £;(¢;) = 2¢;. The virtual
costs of various nodes are shown in sub-figure (b). Algorithm
2 first returns path s — A — B — C' — d (length=3) as
the shortest path. Because B and C' are bottleneck nodes, 0.5
of the original flow is allocated to this path. Accordingly, the
residual capacity of A is changed to 1 —0.5 = 0.5. Excluding
nodes B and C, Algorithm 2 next determines path s — A —
E — F — d (length=4) as the shortest path. Now, A, E,
and F' are all bottleneck nodes. So 0.5 of the original flow
is allocated to this path. Because the traffic demand has been
fully allocated, Algorithm 2 terminates. So the LOPP contains
two paths with the flow equally distributed between them.

Now consider how Algorithm 3 calculates the payments.
Consider the payment to A, as an example. Both paths in
LOPP traverse A, making it the most complicated case among
all relaying nodes. To calculate the payment to A, Algorithm
3 first excludes A from the graph and calls Algorithm 2 to find
an alternate LOPP that does not traverse A. This leads to the
alternate 2-path LOPP: s - G — F — F — d (weight=5,
allocated traffic =0.5) and s - G — H — I — d (weight=6,
allocated traffic =0.5). The latter is the critical cutoff path.
So there are 3 critical increments of 4, namely 5 — 3 = 2,
6—-3=3,5—4=1,and 6 —4 = 2. For A{4 = 1, the new
virtual cost of A is 1 + 1 = 2. Beyond this new virtual cost,
Algorithm 2 finds the new LOPP s - A — B — C — d that
carries 0.5 of the flow, and path s — G — F — F' — d that
carries 0.5 of the flow. So overall A carries 0.5 of the flow.
We repeat the above process and find that when Ay = 2,
the LOPP consists of the two paths s - G — F — F — d
(traffic=0.5) and s - A — B — C — d (traffic=0.5); when
A&y = 3, the LOPP consists of s - G — E — F — d
(traffic=0.5) and s — G — H — [ — d (traffic=0.5). So the
traffic of A is 0.5 and 0, respectively, when £4 goes beyond
3 and 4. The traffic of A vs. £4 is plotted in sub-figure (c).
&4 is then inversely converted to the actual cost according to
¢, (y) = 0.5y, as shown in sub-figure (d). So the payment to
Ais1x054+1x(1-05)+05x(2—1)=1.5.

E. Truthful Capacity Reporting

The above LOPP route selection and payment calculation
procedure takes as input the capacity constraint b; at each
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Fig. 2. Example of LOPP with a node-capacity constraint.

node. Just like the cost c¢;, b; should also be considered as
private information that is only known to node j. As a result,
node j may not report its true b; to the routing mechanism,
if that results in more profit for node j. For example, by
exaggerating its capacity, node j may relay a larger fraction
of traffic and receive a higher payment, leading to a possibly
higher profit. To maintain the overall truthfulness of the
mechanism, mis-reporting of capacity information should be
eliminated by design.

We propose the following payment transaction algorithm
that guarantees truthful capacity reporting by every node. At
the beginning of the underlying session, the mechanism uses
the reported node costs and capacities to compute the LOPP
route X° and the payment p° based on Algorithms 2 and 3,
respectively. After this calculation, s starts its transmission
over route X°. The actual payment to intermediate nodes,
a.k.a. payment transaction, will be deferred until the end of the
underlying session. During the session, each intermediate node
records the traffic volume it has carried. This traffic-recording
is either based on the tamper-proof hardware proposed in [3] or
on the cryptographic-receipt-based software proposed in [21].
Either way, it ensures that the actual traffic volume carried by
a node is honestly recorded. After the session, source node s
starts the payment transaction process. For SR node j, node
s compares the volume of traffic that should be carried by j
according to X with the actual volume of traffic that has been
passed through j. The former quantity is calculated according
to X° as s;? = Zi eRU) x9. The latter one, denoted by s;‘
comes from the traffic recording of node j. If sy < 83,
then zero payment will be made to node j. Otherwise, the
calculated payment p7 is paid to node j for every packet sent
by s.

Theorem 3: The above payment materialization method re-
sults in truthful capacity reporting.

Proof: The basic idea of the proof is to show that if a node
j can get a higher profit by mis-reporting b;, then it must
be a bottleneck node in the LOPP and its reported capacity
must be greater than the actual b;. Accordingly, the traffic
allocated to this node must be greater than its capacity. So
the actual traffic carried by node 7 must be smaller than its
assigned traffic. The proposed method achieves truthfulness
by specifically punishing this behavior. The detailed proof is
as follows.

Denote the reported capacity of node j by Bj. Node j cheats
by either reporting Bj > b; or Bj < b;. Either way, the ranking
of the paths from s to d in terms of length does not change
with Ej. As a result, according to Algorithm 2, the order by
which traffic demand is allocated to various paths does not
change, but the traffic volume a path receives may change
with b]‘.

First note that node j does not have an incentive to under-
report its capacity, i.e., claiming l~)j < bj. The reason is that
by Algorithm 2, a smaller Ej can only reduce or maintain, but
never increase, the traffic carried by those paths that traverse
through node j, i.e., ZieR”; ;(€) is non-decreasing with b;.
Substituting the payment (9) into (2), the profit of node j is
given by

nxpe) =[]
(7

Therefore, a smaller volume of traffic carried by node j only
leads to smaller profit for node j. Thus node j does not have
incentive to under-report its capacity.

Now consider the situation when b; > b;. Node j falls into
one of the following four cases: (1) Node j is not part of the
LOPP whether it reports b; or b;: (2) Node j is not part of
the LOPP when reporting b;, but is part of it when reporting
i)j; (3) Node j is part of the LOPP when reporting b; and is
not part of it when reporting I;j; and (4) node j is part of the
LOPP when reporting b; and is also part of it when reporting
b;.

’ For case (1), the profit for node j is zero whether it reports
b; or Bj, so mis-reporting does not lead to a higher profit. Case
(2) cannot happen for the following reason. If node j is not
included in the LOPP when reporting b;, then the ranking of
the shortest path from s to d that traverses through node j is
behind those paths that receive non-zero traffic allocation. This
means that the paths that receive non-zero traffic allocation do
not traverse node j. Therefore, increasing the reported capacity
of node j does not change the order and volume by which
these paths are allocated traffic. So node j cannot be included
in the LOPP if it has not been included in it when reporting
b

Z i (ij E—j)def—j (E_j)dé_j.
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In case (3), the profit of node j is greater than 0 when it
reports b;. When it reports l; it is not included in the route,
so its profit is 0. So its profit is reduced when it mis-reports
its capacity.

Case (4) contains two sub-cases. First, when b; is reported,
node j is not a bottleneck node of any path on the LOPP,
and second, when b; is reported, node j is a bottleneck
node of some path that is part of the LOPP. For the first
sub-case, reporting a larger capacity does not change the
traffic allocation among routes, because such allocation is
solely decided by bottleneck nodes. Increasing the capacity
of node j does not change these bottleneck nodes, so the
traffic allocation does not change. Similarly, reporting 67‘ also
does not change the calculated payment to node j, because
the traffic allocation in the integral in (9) does not change. So
node j’s profit remains the same when the reported capacity
is changed from b, to b;. For the second sub-case, because



node j is a bottleneck node when b; is reported, it saturates
its capacity when relaying b; amount of traffic. When l;j is
reported, more traffic will be allocated to node j according to
Algorithm 2. This makes the traffic that is assigned to node
j by Algorithm 2 exceed the node’s actual capacity limit. As
a result, during transmission, some traffic must be dropped
at node j, making the actual relayed traffic volume smaller
than the planned volume. According to the proposed payment
materialization method, the actual payment to node j will be
dropped to 0. Given that node j’s profit is greater than 0 when
b; is reported, it is not in the interest of node j to report a
higher capacity.

Combining all the above cases, Theorem 3 is proved. -

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of LPP and
LOPP using simulations. The VCG-based LCP algorithm
is also studied. For an end-to-end flow, the computed cost
and price are averaged over 500 sessions to obtain their
expected value. Our simulations show that in general, similar
performance trends are observed under different node cost
distributions. So we only show the results under uniformly
distributed node costs. The following results are averaged over
10 independent runs.

A. LPP Without Node-Capacity Constraints

In Figure 3, we study the impact of network topology on
performance. In these simulations, all paths from the source
to the destination are node-disjoint and contain the same
number of hops. Node costs are independently and uniformly
distributed over [0, 2]. Albeit highly idealized, this topology
allows us to directly control two important topological param-
eters: the number of alternate paths and their lengths. Figure 3
shows that a significant saving in price is achieved using
LPP over LCP routing. At the same time, the cost difference
between the two is trivial. This phenomenon indicates that
LPP routing sacrifices little system-wide efficiency in order
to achieve a lower payment for the end user. Two additional
observations can be made. First, the saving in price is more
significant when the number of alternate paths is small (sub-
figure(a)). This is because under the VCG algorithm, the price
of the LCP is the cost of the second-shortest path. When
the total number of alternate paths is small, the monopoly
effect of the second-shortest path becomes more significant,
leading to a higher price for the LCP. Second, the saving
due to LPP is more significant when the path length is larger
(sub-figure(b)). This is due to the accumulative saving over
various intermediate nodes along the path, which becomes
more pronounced with an increase in the number of hops.

In Figure 4, we study the sensitivity of our algorithm to
errors in estimating the distribution of the node cost. We
are interested in two types of estimation errors: parameter
error and distribution type error. Specifically, we generate the
node cost according to a distribution f(!), but we assume the
mechanism uses an estimated version, say f(?), to compute
the virtual cost. For a parameter error, the distributions f M
and £ are of the same type (function), but differ slightly
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in the values of their parameters. We show the results for
both uniformly and exponentially distributed node costs. For
uniformly distributed costs, f(!) has a domain of [v,w] and
f@ has a domain of [v + 0.5¢(w — v),w — 0.5¢(w — v)],
where € > 0 is the normalized error. For exponentially
distributed costs, the rate parameters of f() and f( are
given by A = (1 + )MV, For an error in the distribution
type, (2 and f(!) are different functions. In particular, when
f (1) is uniform, we assume its estimated version, f 2 is an
exponential distribution of the same mean. The price of the
LPP under both estimation errors is plotted in Figure 4. From
this figure, it is clear that as long as the means of f() and
@ are close, both types of errors have only minor impact
on the price of the LPP. This phenomenon indicates that our
algorithm is insensitive to estimation errors in the node-cost
distribution.

In Figure 5, we analyze the performance of LPP routing
under random topologies. We consider a 1000 meter x 1000
meter area. The source and destination are located at the
middle of two opposite sides of the square, respectively. Other
nodes are uniformly distributed. Heterogeneous spectrum op-
portunities are simulated. Specifically, we assume that in the
middle of this square, there is a 200-meter-radius circular
“hot” zone, in which the node cost is uniformly distributed
in the range [0.5, 5]. For a node outside the hot zone, its cost
is uniformly distributed in [0.5,2]. Figure 5 shows that the
price and cost of LPP and LCP decrease with the node’s
transmission range and with the number of nodes in the
network. The savings in price due to LPP is more significant
at small transmission ranges and small numbers of nodes. This
can be explained by noting that a smaller transmission range
corresponds to a longer path, and a smaller number of nodes
means a smaller number of alternate paths from the source



to the destination. So these trends are in line with our results
in Figure 3. Sub-figures (c) and (d) show the percentage of
sessions for which LPP#£LCP. In general, in more than 10%
of the sessions, the LPP differs from the LCP. Despite this
large difference, sub-figures (a) and (b) show that the cost of
the LPP is only slightly higher than the LCP. This phenomenon
indicates that the LPP in general tends to employ a node of
relatively low cost, but not necessarily the node of the lowest
cost.

B. LOPP with Node-Capacity Constraints

1) A Single-Flow Scenario: In this set of simulation, we
study LOPP routing under static traffic conditions. More
specifically, our simulation is based on the same random
topologies generated for Figure 5, but now each node is
associated with a capacity limit (in Mbits/s). For a node in
the hot zone, its capacity is randomly selected between 0 and
2 Mbits/s. Otherwise, the node capacity is selected between 0O
and 5 Mbits/s. Once the node capacity is selected, it does not
change throughout the simulation. We assume that there is only
one flow inside the network. The source and destination are
fixed at the middle of the two oppositive sides of the simulated
square area, respectively. The flow has a constant rate demand
for all its sessions. Due to the lack of counterpart multi-path
LCP algorithms, we compare the multi-path route found by
LOPP, denoted as MLPP in our results, with two single-path
routing algorithms. These two algorithms are straightforward
extensions of the VCG-LCP and the simplified LPP (the one
that does not consider the node capacity constraint), where
we prune out from the topology nodes whose capacities are
smaller than the rate demand. The LCP and the simplified
LPP algorithms are then applied to the residual topology. To
distinguish it from the MLPP, the extension of the simplified
LPP is denoted as SLPP.

In Figure 6(a) we plot the average price/cost of various
mechanisms as a function of the rate demand. It is clear
that the cost and price of MLPP are significantly smaller
than its single-path counterparts. In addition, the figure shows
that one problem of single-path routing algorithms is that the
destination may become unreachable after pruning out nodes
of low capacity. In contrast, MLPP supports a much higher rate
demand by “bonding” the capacities of multiple paths. This
point is clear in sub-figure (b), where the average number of
paths for the MLPP is plotted as a function of the rate demand.
It is evident that as we increase the rate demand, more paths
are included in the MLPP.

In Figure 6(c), we plot the average price/cost of various
mechanisms as a function of the number of nodes. The figure
shows that the cost and price decrease with the number of
nodes. This can be explained by noting that with higher
node density, more alternative paths become available between
the source and the destination, which reduces the cost and
price of the computed route. The average number of paths
in the MLPP is plotted as a function of the number of
nodes in Figure 6(d). Initially, the number of paths in the
MLPP increases with the number of nodes, but once the
number of nodes becomes sufficiently large, the number of

paths in the MLPP begins to decrease with node density.
This phenomenon can be explained as follows. At low node
densities, the number of nodes that simultaneously have small
costs and high capacities is small. As node density increases,
the cost of a path may become smaller, but the capacity of
its bottleneck node may not improve. This causes traffic to
be distributed among more paths that are of lower cost. Once
the node density is sufficiently high, the number of nodes that
have small cost and also high capacity becomes sufficiently
large such that a path of low cost can also accommodate more
traffic, which reduces the number of paths in the MLPP route.

2) A Multi-flow Scenario: In this set of simulations, we are
interested in the performance of the proposed algorithms under
dynamic traffic conditions. We assume that there are multiple
flows in the network, each of which alternates between ON
and OFF periods. An ON period corresponds to an active
session. No traffic is generated during the OFF period. We
assume that the lengths of the ON and OFF periods follow
an exponential distribution with means Tpony = 20 seconds
and Torr = 20 seconds. Capacity allocation at intermediate
nodes is performed on a dynamic basis: capacity is allocated
to a flow during the ON periods and returned to the node
during the OFF periods. So, the main difference between
this scenario and the one assumed in the previous section
is that, in here, the instantaneous residual capacity at an
intermediate node fluctuates randomly with the real-time traffic
conditions. As a result, some sessions of a flow may be denied
a route due to insufficient instantaneous residual capacity at
some intermediate nodes. We are interested in the blocking
probability of the flows, i.e., the ratio of sessions for which
a MLPP/SLPP/LCP route could not be found, and thus the
session is denied admission to the network. We consider
the same random topology and node cost settings as in the
previous simulations. The capacity of each node is decided in
the same way as in the single-flow scenario. We assume that
the rate demand of a flow is uniformly sampled between O
and 5 Mbps, and does not change during the simulation. The
source and destination of a flow are randomly selected and
are fixed in each simulation run. We simulate 10000 seconds,
corresponding to an average of 250 sessions for each flow.

The blocking probability under various mechanisms is plot-
ted as a function of the number of nodes in Figure 7(a). It
can be observed that the blocking probability under MLPP
is much lower than its single-path counterpart. In addition,
as we increase the number of nodes, the blocking probability
under MLPP is reduced quickly, because those newly added
nodes begin to carry traffic. We plot the average number of
paths contained in the MLPP versus the number of nodes in
Figure 7(b). For the same reason explained in the single-flow
case, a similar trend is observed as those in Figure 6(d).

In Figure 7(c), we plot the blocking probability as a function
of the number of flows. Consistently, the MLPP is shown to be
more accommodative of traffic dynamics than its single-path
counterparts. The average number of paths contained in the
MLPP versus the number of flows is plotted in Figure 7(d).
It is shown that MLPP starts to include more paths with an
increase in the number of flows, because of the increased
traffic. However, when the number of flows is too large,
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the number of paths contained in the MLPP begins to drop,
because now more traffic is blocked.

VII. CONCLUSIONS

We studied the truthful LPP routing in an OSA network
without and with node-capacity constraints. In the former case,
we introduced polynomial-time algorithms for finding the LPP
and calculating the payments to SR nodes. In the latter case,
we derived the analytical solution for the LPP and its truthful
payment, but pointed out that the calculation of the truthful
payment is, in general, computationally infeasible. This finding
motivated us to study a sub-optimal but more computationally
feasible version of the problem, namely, the truthful LOPP
route, which we addressed by proposing a polynomial-time
algorithm. Compared with LCP, the adoption of LPP (or LOPP
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when there are node-capacity constraints) can lower the price
paid by end users. The saving in payment using LPP and LOPP
largely depends on the number of alternate paths between
the source and the destination, and the length (in number
of hops) of these paths. In general, the more alternate paths
and the longer these paths are, the more saving the LPP and
LOPP can achieve. Although the LPP and LOPP result in a
lower price tag for end users, its cost is only slightly higher
than that of the LCP. This indicates that the LPP and LOPP
mechanisms only need to sacrifice a trivial amount of social
efficiency in exchange for a lower price tag. In addition, our
study has also shown that when capacity constraint are present,
the proposed LOPP algorithm can accommodate more traffic
in an economical way than the LCP algorithm, by intelligently
splitting a flow into multiple sub-flows and establishing paths



for each sub-flow.

Some open topics remain for future research. In this paper,
we have focused on the mathematical structures of the LPP
mechanism. Protocols that take into account practical issues
related to its implementation are yet to be developed. In
addition, collusion between nodes is not considered in this
work. This will be studied in a future work.
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APPENDIX A
PROOF OF LEMMA 1
Our proof follows the same procedure in [11]. Given two
distinct numbers &) € D; and 622) € Dj, the inequality in
the IC constraint (ﬁ) implies that

U;j(X,p, &) >

J

~(2) ~ ~(1 ~(2) ~
/D pi (@7, e_;) — &V > zi(@?,e5)

—j ieRW)
Xf_j(é_j)dé_j (18)
UJ (X7pa5§‘2)) >
e (2 (1
[ m@en-a? 3w e
D—j erl)
xf_;(&_;)de_;. (19)
In addition, we can show the following
~(2) ~ ~(1 ~(2) ~ ~ ~
R G R DRG] FIC
P i icrY) |
~(2) ~ ~(2 ~(2) ~ ~ ~
= / pi(EP,& ;) =& N (@ e y)| £ )de;
! iRty _
—/ @D =) D (@ &) (E-y)de-,
D ierY)
= U;(X,p, &) — @ - &)Q; ). (20)

Substituting (20) to (18), we get
U;(X.p. &) 2 U;(X,p &7) - (Y = &7)Q,(&"). @D
Following the same treatment, but now consider (19) we get
U;(X,p. &) = U;(X,p, &) - (& =)@, (). 22
Combining (21) and (22), we derive
@2 —d;E?) <X, p, &) - U; (X, p, &) <
(

J

This means (Egz) - E;l))Qj(Ef)) < (”(2) - E;l))Qj(~§.1)). So
condition (1) of Lemma 1 follows.



Note that the inequalities in (23) can be rewritten for any
>0 as

5@]( 2)) < U (X p,é ~(2) 5) U (X p,é ~(2)) < 5@]_(6;2)_5).

(24)
Since Q);(¢;) is decreasing in &;, it is Riemann integrable [11].
So

- Qj(ny)dr; = Uj(X,p, &) — Uj(X,p,w;).  (25)
This proves condition 2 of Lemma 1. n

APPENDIX B
PROOF OF LEMMA 2

The proof follows the method used in [11]. In particular,
the objective function in (1) can be rewritten as follows

LX,p)= Y. [ & Y z(@f@)de
1<5<n ier")
+ > / pi(@) =& Y. (@) | £(&)de. (26)
1<j<n ier()
The second term in (26) can be written as
/ pi@) =& > (@) f(&)de
b icRY)
U)]
= / U;(X,p, ¢)f;(¢;)de;. 27
v

J

Substituting condition (2) of Lemma 1 into (27), we get

/D pi(@) —& > wi(@)] f(&)de

er ()
i€R

U;(X, p,w;) + /wJ /w] Qj(75)dT; f;(¢;)dE;

= U;i(X,p,wj) / Fy( xl( )_;(€—;)dc.(28)

ZeR(J)

Substituting (28) into (26), after some mathematical manipu-
lation, the objective function of (1) can be rewritten as

rete = 3 / [ ” L @
+ > UiX,p,wy). (29)

It is easy to show that when the payment is p;(¢) =
¢ ZieRo; 7;(€) + féj" ZieRo; xi(7j,€_)dry, for 1 < j <
n, the second term in (29),516 U;(X,p,w;), equals O.
According to the Individual Rationality constraint, U; >
0. Therefore, the payment method in Lemma 2 minimizes
U;j(X,p,w;j). As a result, the objective of minimizing
I's(X, p) is reduced to minimizing the new objective function
S icjen o [c] ?jg))J 5 ere) T (@)F(@)dE. Ttis easy 1o
verify that the payment function always satisfies the IR con-
straint, because p;(¢) > ¢; ZieR(jj x;(€). The only constraint

which has not been reflected is the multi-path constraint, which
we append to the new optimization formulation. This proves
Lemma 2. =
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