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Privacy-Preserving and Truthful Detection of Packet
Dropping Attacks in Wireless Ad Hoc Networks

Tao Shu and Marwan Krunz

Abstract—Link error and malicious packet dropping are two
sources for packet losses in multi-hop wireless ad hoc network.
In this paper, while observing a sequence of packet losses in
the network, we are interested in determining whether the losses
are caused by link errors only, or by the combined effect of
link errors and malicious drop. We are especially interested
in the insider-attack case, whereby malicious nodes that are
part of the route exploit their knowledge of the communication
context to selectively drop a small amount of packets critical to
the network performance. Because the packet dropping rate in
this case is comparable to the channel error rate, conventional
algorithms that are based on detecting the packet loss rate cannot
achieve satisfactory detection accuracy. To improve the detection
accuracy, we propose to exploit the correlations between lost
packets. Furthermore, to ensure truthful calculation of these
correlations, we develop a homomorphic linear authenticator
(HLA) based public auditing architecture that allows the detector
to verify the truthfulness of the packet loss information reported
by nodes. This construction is privacy preserving, collusion proof,
and incurs low communication and storage overheads. To reduce
the computation overhead of the baseline scheme, a packet-block-
based mechanism is also proposed, which allows one to trade
detection accuracy for lower computation complexity. Through
extensive simulations, we verify that the proposed mechanisms
achieve significantly better detection accuracy than conventional
methods such as a maximum-likelihood based detection.

Index Terms—packet dropping, secure routing, attack detec-
tion, homomorphic linear signature, auditing.

I. INTRODUCTION

In a multi-hop wireless network, nodes cooperate in relay-
ing/routing traffic. An adversary can exploit this cooperative
nature to launch attacks. For example, the adversary may first
pretend to be a cooperative node in the route discovery process.
Once being included in a route, the adversary starts dropping
packets. In the most severe form, the malicious node simply
stops forwarding every packet received from upstream nodes,
completely disrupting the path between the source and the
destination. Eventually, such a severe Denial-of-Service (DoS)
attack can paralyze the network by partitioning its topology.

Even though persistent packet dropping can effectively
degrade the performance of the network, from the attacker’s
standpoint such an “always-on” attack has its disadvantages.
First, the continuous presence of extremely high packet loss
rate at the malicious nodes makes this type of attack easy to be
detected [25]. Second, once being detected, these attacks are
easy to mitigate. For example, in case the attack is detected
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but the malicious nodes are not identified, one can use the
randomized multi-path routing algorithms [28][29] to circum-
vent the black holes generated by the attack, probabilistically
eliminating the attacker’s threat. If the malicious nodes are
also identified, their threats can be completely eliminated by
simply deleting these nodes from the network’s routing table.

A malicious node that is part of the route can exploit its
knowledge of the network protocol and the communication
context to launch an insider attack–an attack that is inter-
mittent, but can achieve the same performance degradation
effect as a persistent attack at a much lower risk of being
detected. Specifically, the malicious node may evaluate the
importance of various packets, and then drop the small amount
that are deemed highly critical to the operation of the network.
For example, in a frequency-hopping network, these could
be the packets that convey frequency hopping sequences for
network-wide frequency-hopping synchronization; in an ad
hoc cognitive radio network, they could be the packets that
carry the idle channel lists (i.e., white spaces) that are used
to establish a network-wide control channel. By targeting
these highly critical packets, the authors in [21], [24], [25]
have shown that an intermittent insider attacker can cause
significant damage to the network with low probability of
being caught. In this paper, we are interested in combating
such an insider attack. In particular, we are interested in the
problem of detecting the occurrence of selective packet drops
and identifying the malicious node(s) responsible for these
drops.

Detecting selective packet-dropping attacks is extremely
challenging in a highly dynamic wireless environment. The
difficulty comes from the requirement that we need to not
only detect the place (or hop) where the packet is dropped, but
also identify whether the drop is intentional or unintentional.
Specifically, due to the open nature of wireless medium,
a packet drop in the network could be caused by harsh
channel conditions (e.g., fading, noise, and interference, a.k.a.,
link errors), or by the insider attacker. In an open wireless
environment, link errors are quite significant, and may not
be significantly smaller than the packet dropping rate of the
insider attacker. So, the insider attacker can camouflage under
the background of harsh channel conditions. In this case, just
by observing the packet loss rate is not enough to accurately
identify the exact cause of a packet loss.

The above problem has not been well addressed in the
literature. As discussed in Section II, most of the related works
preclude the ambiguity of the environment by assuming that
malicious dropping is the only source of packet loss, so that
there is no need to account for the impact of link errors. On
the other hand, for the small number of works that differentiate
between link errors and malicious packet drops, their detection
algorithms usually require the number of maliciously-dropped
packets to be significantly higher than link errors, in order to
achieve an acceptable detection accuracy.
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In this paper, we develop an accurate algorithm for detecting
selective packet drops made by insider attackers. Our algo-
rithm also provides a truthful and publicly verifiable decision
statistics as a proof to support the detection decision. The high
detection accuracy is achieved by exploiting the correlations
between the positions of lost packets, as calculated from the
auto-correlation function (ACF) of the packet-loss bitmap–a
bitmap describing the lost/received status of each packet in a
sequence of consecutive packet transmissions. The basic idea
behind this method is that even though malicious dropping
may result in a packet loss rate that is comparable to nor-
mal channel losses, the stochastic processes that characterize
the two phenomena exhibit different correlation structures
(equivalently, different patterns of packet losses). Therefore,
by detecting the correlations between lost packets, one can
decide whether the packet loss is purely due to regular link
errors, or is a combined effect of link error and malicious drop.
Our algorithm takes into account the cross-statistics between
lost packets to make a more informative decision, and thus is
in sharp contrast to the conventional methods that rely only
on the distribution of the number of lost packets.

The main challenge in our mechanism lies in how to
guarantee that the packet-loss bitmaps reported by individual
nodes along the route are truthful, i.e., reflect the actual status
of each packet transmission. Such truthfulness is essential for
correct calculation of the correlation between lost packets.
This challenge is not trivial, because it is natural for an
attacker to report false information to the detection algorithm
to avoid being detected. For example, the malicious node
may understate its packet-loss bitmap, i.e., some packets may
have been dropped by the node but the node reports that
these packets have been forwarded. Therefore, some auditing
mechanism is needed to verify the truthfulness of the reported
information. Considering that a typical wireless device is
resource-constrained, we also require that a user should be
able to delegate the burden of auditing and detection to some
public server to save its own resources.

Our solution to the above public-auditing problem is con-
structed based on the homomorphic linear authenticator (HLA)
cryptographic primitive [2][3][27], which is basically a sig-
nature scheme widely used in cloud computing and storage
server systems to provide a proof of storage from the server
to entrusting clients [30]. However, direct application of HLA
does not solve our problem well, mainly because in our
problem setup, there can be more than one malicious node
along the route. These nodes may collude (by exchanging
information) during the attack and when being asked to submit
their reports. For example, a packet and its associated HLA
signature may be dropped at an upstream malicious node, so
a downstream malicious node does not receive this packet and
the HLA signature from the route. However, this downstream
attacker can still open a back-channel to request this informa-
tion from the upstream malicious node. When being audited,
the downstream malicious node can still provide valid proof
for the reception of the packet. So packet dropping at the
upstream malicious node is not detected. Such collusion is
unique to our problem, because in the cloud computing/storage
server scenario, a file is uniquely stored at a single server, so
there are no other parties for the server to collude with. We
show that our new HLA construction is collusion-proof.

Our construction also provides the following new features.
First, privacy-preserving: the public auditor should not be
able to decern the content of a packet delivered on the route

through the auditing information submitted by individual hops,
no matter how many independent reports of the auditing
information are submitted to the auditor. Second, our con-
struction incurs low communication and storage overheads at
intermediate nodes. This makes our mechanism applicable to
a wide range of wireless devices, including low-cost wire-
less sensors that have very limited bandwidth and memory
capacities. This is also in sharp contrast to the typical storage-
server scenario, where bandwidth/storage is not considered an
issue. Last, to significantly reduce the computation overhead
of the baseline constructions so that they can be used in
computation-constrained mobile devices, a packet-block-based
algorithm is proposed to achieves scalable signature generation
and detection. This mechanism allows one to trade detection
accuracy for lower computation complexity.

The remainder of this paper is organized as follows. In
Section II we review the related work. The system/adversary
models and problem statement are described in Section III. We
present the proposed scheme and analyze its security perfor-
mance and overheads in Section IV. The low-computation-
overhead block-based algorithm is proposed in Section V.
Simulation results are presented in Section VI, and we con-
clude the paper in Section VII.

II. RELATED WORK

Depending on how much weight a detection algorithm gives
to link errors relative to malicious packet drops, the related
work can be classified into the following two categories.

The first category aims at high malicious dropping rates,
where most (or all) lost packets are caused by malicious
dropping. In this case, the impact of link errors is ignored.
Most related work falls into this category. Based on the
methodology used to identify the attacking nodes, these works
can be further classified into four sub-categories. The first
sub-category is based on credit systems [9][34][10]. A credit
system provides an incentive for cooperation. A node receives
credit by relaying packets for others, and uses its credit to send
its own packets. As a result, a maliciously node that continuous
to drop packets will eventually deplete its credit, and will
not be able to send its own traffic. The second sub-category
is based on reputation systems [12][8][14][19][20][11][4]. A
reputation system relies on neighbors to monitor and identify
misbehaving nodes. A node with a high packet dropping
rate is given a bad reputation by its neighbors. This repu-
tation information is propagated periodically throughout the
network and is used as an important metric in selecting
routes. Consequently, a malicious node will be excluded from
any route. The third sub-category of works relies on end-to-
end or hop-to-hop acknowledgements to directly locate the
hops where packets are lost [18][22][23][5][6][32]. A hop of
high packet loss rate will be excluded from the route. The
fourth sub-category addresses the problem using cryptographic
methods. For example, the work in [17] utilizes Bloom filters
to construct proofs for the forwarding of packets at each node.
By examining the relayed packets at successive hops along
a route, one can identify suspicious hops that exhibit high
packet loss rates. Similarly, the method in [16][33] traces the
forwarding records of a particular packet at each intermediate
node by formulating the tracing problem as a Renyi-Ulam
game. The first hop where the packet is no longer forwarded
is considered a suspect for misbehaving.

The second category targets the scenario where the number
of maliciously dropped packets is significantly higher than
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that caused by link errors, but the impact of link errors is
non-negligible. Certain knowledge of the wireless channel is
necessary in this case. The authors in [26] proposed to shape
the traffic at the MAC layer of the source node according to
a certain statistical distribution, so that intermediate nodes are
able to estimate the rate of received traffic by sampling the
packet arrival times. By comparing the source traffic rate with
the estimated received rate, the detection algorithm decides
whether the discrepancy in rates, if any, is within a reasonable
range such that the difference can be considered as being
caused by normal channel impairments only, or caused by
malicious dropping, otherwise. The works in [13] and [31]
proposed to detect malicious packet dropping by counting
the number of lost packets. If the number of lost packets is
significantly larger than the expected packet loss rate made
by link errors, then with high probability a malicious node is
contributing to packet losses.

All methods mentioned above do not perform well when
malicious packet dropping is highly selective. More specifi-
cally, for the credit-system-based method, a malicious node
may still receive enough credits by forwarding most of the
packets it receives from upstream nodes. Similarly, in the
reputation-based approach, the malicious node can maintain a
reasonably good reputation by forwarding most of the packets
to the next hop. While the Bloom-filter scheme is able to
provide a packet forwarding proof, the correctness of the proof
is probabilistic and it may contain errors. For highly selectively
attacks (low packet-dropping rate), the intrinsic error rate of
Bloom filer significantly undermines its detection accuracy.
As for the acknowledgement-based method and all the mech-
anisms in the second category, merely counting the number of
lost packets does not give a sufficient ground to detect the real
culprit that is causing packet losses. This is because the differ-
ence in the number of lost packets between the link-error-only
case and the link-error-plus-malicious-dropping case is small
when the attacker drops only a few packets. Consequently,
the detection accuracy of these algorithms deteriorates when
malicious drops become highly selective.

Our study targets the challenging situation where link errors
and malicious dropping lead to comparable packet loss rates.
The effort in the literature on this problem has been quite
preliminary, and there is a few related works. Note that the
cryptographic methods proposed in [24] to counter selective
packet jamming target a different issue than the detection
problem studied in this paper. The methods in [24] delay a
jammer from recognizing the significance of a packet after
the packet has been successfully transmitted, so that there is
no time for the jammer to conduct jamming based on the
content/importance of the packet. Instead of trying to detect
any malicious behavior, the approach in [24] is proactive, and
hence incurs overheads regardless of the presence or absence
of attackers.

III. SYSTEM MODELS AND PROBLEM STATEMENT

A. Network and Channel Models
Consider an arbitrary path PSD in a multi-hop wireless

ad hoc network, as shown in Figure 1. The source node S
continuously sends packets to the destination node D through
intermediate nodes n1, . . . , nK , where ni is the upstream node
of ni+1, for 1 ≤ i ≤ K − 1. We assume that S is aware of
the route PSD, as in Dynamic Source Routing (DSR) [15].
If DSR is not used, S can identify the nodes in PSD by
performing a traceroute operation. Here we mainly focus on

static or quasi-static wireless ad hoc networks, i.e., we assume
that the network topology and link characteristics remain
unchanged for a relatively long period of time. Example
networks include wireless mesh networks (WMNs) and ad hoc
networks formed in nomadic computing. Extension to a highly
mobile environment is out of our scope and will be considered
in the future work.

 

Fig. 1. Network and attack model.

We model the wireless channel of each hop along PSD as
a random process that alternates between good and bad states.
Packets transmitted during the good state are successful, and
packets transmitted during the bad state are lost. In contrast to
the classical Gilbert-Ellioit (GE) channel model, here we do
not assume any Markovian property on the channel behavior.
We only require that the sequence of sojourn times for each
state follows a stationary distribution, and the autocorrelation
function of the channel state, say fc(i), where i is the time lag
in packets, is also stationary. Here we limit our study to quasi-
static networks, whereby the path PSD remains unchanged
for a relatively long time, so that the link error statistics of
the wireless channel is a wide-sense stationary (WSS) random
process (i.e., fc(i) is stationary). Detecting malicious packet
drops may not be a concern for highly mobile networks,
because the fast-changing topology of such networks makes
route disruption the dominant cause for packet losses. In
this case, maintaining stable connectivity between nodes is a
greater concern than detecting malicious nodes. The function
fc(i) can be calculated using the probing approach in [1]. In
brief, a sequence of M packets are transmitted consecutively
over the channel. By observing whether the transmissions are
successful or not, the receiver obtains a realization of the chan-
nel state (a1, . . . , aM ), where aj ∈ {0, 1} for j = 1, . . . ,M .
In this sequence, “1” denotes the packet was successfully
received, and “0” denotes the packet was dropped. fc(i) is
derived by computing the autocorrelation function of this
sample sequence: fc(i)

def
= E{ajaj+i} for i = 0, . . . ,M ,

where the expectation is calculated over all transmitted packets
j = 1, . . . ,M . This autocorrelation function describes the
correlation between packet transmissions (successful/lost) at
different times, as a function of the time lag. The time invariant
nature of fc is guaranteed by the WSS assumption of the
wireless channel. The measurement of fc(i) can take place
online or offline. A detailed discussion on how fc(i) is derived
is out of the scope of this paper, and we simply assume that
this information is given as input to our detection algorithm.

There is an independent auditor Ad in the network. Ad is
independent in the sense that it is not associated with any
node in PSD and does not have any knowledge of the secrets
(e.g., cryptographic keys) held by various nodes. The audi-
tor is responsible for detecting malicious nodes on demand.
Specifically, we assume S receives feedback from D when D
suspects that the route is under attack. Such a suspicion may be
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triggered by observing any abnormal events, e.g., a significant
performance drop, the loss of multiple packets of a certain
type, etc. We assume that the integrity and authenticity of the
feedback from D to S can be verified by S using resource-
efficient cryptographic methods such as the Elliptic Curve
Digital Signature Algorithm (ECDSA). Once being notified of
possible attacks, S submits an attack-detection request (ADR)
to Ad. To facilitate its investigation, Ad needs to collect certain
information (elaborated on in the next section) from the nodes
on route PSD. We assume that each such node must reply
to Ad’s inquiry, otherwise the node will be considered as
misbehaving. We assume that normal nodes will reply with
truthful information, but malicious nodes may cheat. At the
same time, for privacy reasons, we require that Ad cannot
determine the content of the normal packets delivered over
PSD from the information collected during the auditing.

B. Adversarial Model

The goal of the adversary is to degrade the network’s
performance by maliciously dropping packets while remaining
undetected. We assume that the malicious node has knowledge
of the wireless channel, and is aware of the algorithm used
for misbehavior detection. It has the freedom to choose what
packets to drop. For example, in the random-drop mode, the
malicious node may drop any packet with a small probability
pd. In the selective-mode, the malicious node only drops
packets of certain types. A combination of the two modes may
be used. We assume that any node on PSD can be a malicious
node, except the source and the destination. In particular, there
can be multiple malicious nodes on PSD.

We consider the following form of collusion between ma-
licious nodes: A covert communication channel may exist
between any two malicious nodes, in addition to the path
connecting them on PSD. As a result, malicious nodes can
exchange any information without being detected by Ad or
any other nodes in PSD. Malicious nodes can take advantage
of this covert channel to hide their misbehavior and reduce the
chance of being detected. For example, an upstream malicious
node may drop a packet on PSD, but may secretely send this
packet to a downstream malicious node via the covert channel.
When being investigated, the downstream malicious node can
provide a proof of the successful reception of the packet. This
makes the auditor believe that the packet was successfully
forwarded to the downstream nodes, and not know that the
packet was actually dropped by an upstream attacker.

C. Problem Statement

Under the system and adversary models defined above,
we address the problem of identifying the nodes on PSD

that drop packets maliciously. We require the detection to be
performed by a public auditor that does not have knowledge
of the secrets held by the nodes on PSD. When a malicious
node is identified, the auditor should be able to construct a
publicly verifiable proof of the misbehavior of that node. The
construction of such a proof should be privacy preserving, i.e.,
it does not reveal the original information that is transmitted
on PSD. In addition, the detection mechanism should incur
low communication and storage overheads, so that it can be
applied to a wide variety of wireless networks.
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Fig. 2. Comparison of correlation of lost packets.

IV. PROPOSED DETECTION SCHEME

A. Overview
The proposed mechanism is based on detecting the corre-

lations between the lost packets over each hop of the path.
The basic idea is to model the packet loss process of a hop
as a random process alternating between 0 (loss) and 1 (no
loss). Specifically, consider that a sequence of M packets
that are transmitted consecutively over a wireless channel.
By observing whether the transmissions are successful or not,
the receiver of the hop obtains a bitmap (a1, . . . , aM ), where
aj ∈ {0, 1} for packets j = 1, . . . ,M . The correlation of the
lost packet is calculated as the auto-correlation function of this
bitmap. Under different packet dropping conditions, i.e., link-
error vs. malicious dropping, the instantiations of the packet-
loss random process should present distinct dropping patterns
(represented by the correlation of the instance). This is true
even when the packet loss rate is similar in each instantiation.
To verify this property, in Figure 2 we have simulated the
auto-correlation functions of two packet loss processes, one
caused by 10% link errors, and the other by 10% link errors
plus 10% malicious uniformly-random packet dropping. It
can be observed that significant gap exists between these
two auto-correlation functions. Therefore, by comparing the
auto-correlation function of the observed packet loss process
with that of a normal wireless channel (i.e., fc(i)), one can
accurately identify the cause of the packet drops.

The benefit of exploiting the correlation of lost packets
can be better illustrated by examining the insufficiency of
the conventional method that relies only on the distribution
of the number of lost packets. More specifically, under the
conventional method, malicious-node detection is modeled as
a binary hypothesis test, where H0 is the hypothesis that there
is no malicious node in a given link (all packet losses are due
to link errors) and H1 denotes there is a malicious node in
the given link (packet losses are due to both link errors and
malicious drops). Let z be the observed number of lost packets
on the link during some interval t. Then,

z =

{
x, under H0 (no malicious nodes)
x+ y, under H1 (there is a malicious node) (1)

where x and y are the numbers of lost packets caused by
link errors and by malicious drops, respectively. Both x and
y are random variables. Let the probability density functions
of z conditioned on H0 and on H1 be h0(z) and h1(z),
respectively, as shown in Figure 3(a). We are interested in the
maximum-uncertainty scenario where the a priori probabilities
are given by Pr{H0} = Pr{H1} = 0.5, i.e., the auditor
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(a) mean of y much greater than
mean of x

 

(b) mean of y is comparable to mean
of x

Fig. 3. Insufficiency of conventional detection algorithms when malicious
packet drops are highly selective.

has no prior knowledge of the distributions of H0 and H1 to
make any biased decision regarding the presence of malicious
nodes. Let the false-alarm and miss-detection probabilities be
Pfa and Pmd, respectively. The optimal decision strategy that
minimizes the total detection error Pde

def
= 0.5(Pfa + Pmd) is

the maximum-likelihood (ML) algorithm:{
if z ≤ zth, accept H0

otherwise, accept H1
(2)

where the threshold zth is the solution to the equation
h0(zth) = h1(zth). Under this strategy, Pfa and Pmd are the
areas of the shaded regions shown in Figure 3(a), respectively.
The problem with this mechanism is that, when the mean of
y is small, h1(z) and h0(z) are not sufficiently separated,
leading to large Pfa and Pmd, as shown in Figure 3(b).
This observation implies that when malicious packet drops
are highly selective, counting the number of lost packets is not
sufficient to accurately differentiate between malicious drops
and link errors. For such a case, we use the correlation between
lost packets to form a more informative decision statistic.

To correctly calculate the correlation between lost packets,
it is critical to enforce a truthful packet-loss bitmap report
by each node. We use HLA cryptographic primitive for this
purpose. The basic idea of our method is as follows. An
HLA scheme allows the source, which has knowledge of the
HLA secret key, to generate HLA signatures s1, . . . , sM for
M independent messages r1, . . . , rM , respectively. The source
sends out the ri’s and si’s along the route. The HLA signatures
are made in such a way that they can be used as the basis
to construct a valid HLA signature for any arbitrary linear
combination of the messages,

∑M
i=1 ciri, without the use of the

HLA secret key, where ci’s are randomly chosen coefficients.
A valid HLA signature for

∑M
i=1 ciri can be constructed by

a node that does not have knowledge of the secret HLA key
if and only if the node has full knowledge of s1, . . . , sM . So,
if a node with no knowledge of the HLA secret key provides
a valid signature for

∑M
i=1 ciri, it implies that this node must

have received all the signatures s1, . . . , sM . Our construction
ensures that si and ri are sent together along the route, so that
knowledge of s1, . . . , sM also proves that the node must have
received r1, . . . , rM .

Our detection architecture consists of four phases: setup,
packet transmission, audit, and detection. We elaborate on
these phases in the next section.

B. Scheme Details
1) Setup Phase: This phase takes place right after route

PSD is established, but before any data packets are transmitted

over the route. In this phase, S decides on a symmetric-key
crypto-system (encryptkey, decryptkey) and K symmetric
keys key1, . . . , keyK , where encryptkey and decryptkey are
the keyed encryption and decryption functions, respectively.
S securely distributes decryptkey and a symmetric key keyj
to node nj on PSD, for j = 1, . . . ,K. Key distribution may
be based on the public-key crypto-system such as RSA: S
encrypts keyj using the public key of node nj and sends the
cipher text to nj . nj decrypts the cipher text using its private
key to obtain keyj . S also announces two hash functions,
H1 and HMAC

key , to all nodes in PSD. H1 is unkeyed while
HMAC

key is a keyed hash function that will be used for message
authentication purposes later on.

Besides symmetric key distribution, S also needs to set up
its HLA keys. Let e : G×G → GT be a computable bilinear
map with multiplicative cyclic group G and support Zp, where
p is the prime order of G, i.e., for all α, β ∈ G and q1,
q2 ∈ Zp, e(αq1 , βq2) = e(α, β)q1q2 . Let g be a generator of
G. H2(.) is a secure map-to-point hash function: {0, 1}∗ →
G, which maps strings uniformly to G. S chooses a random
number x ∈ Zp and computes v = gx. Let u be another
generator of G. The secret HLA key is sk = x and the public
HLA key is a tuple pk = (v, g, u).

2) Packet Transmission Phase: After completing the setup
phase, S enters the packet transmission phase. S transmits
packets to PSD according to the following steps.

Before sending out a packet Pi, where i is a sequence
number that uniquely identifies Pi, S computes ri = H1(Pi)
and generates the HLA signatures of ri for node nj , as follows

sji = [H2(i||j)uri ]x, for j = 1, . . . ,K (3)

where || denotes concatenation. These signatures are then sent
together with Pi to the route by using a one-way chained en-
cryption that prevents an upstream node from deciphering the
signatures intended for downstream nodes. More specifically,
after getting sji for j = 1, . . . ,K, S iteratively computes the
following:

s̃Ki = encryptkeyK
(sKi)

τKi = s̃Ki||MACkeyK
(s̃Ki)

s̃K−1i = encryptkeyK−1(sK−1i||τKi)

τK−1i = s̃K−1i||MACkeyK−1(s̃K−1i)

...
s̃ji = encryptkeyj (sji||τj+1i)

τji = s̃ji||MACkeyj (s̃ji)

...
s̃1i = encryptkey1(s1i||τ2i)
τ1i = s̃1i||MACkey1(s̃1i) (4)

where the message authentication code (MAC) in each stage
j is computed according to the hash function HMAC

keyj
. After

getting τ1i, S puts Pi||τ1i into one packet and sends it to node
n1.

When node n1 receives the packet from S, it extracts Pi,
s̃1i, and MACkey1(s̃1i) from the received packet. Then, n1

verifies the integrity of s̃1i by testing the following equality:

MACkey1(s̃1i) = HMAC
key1

(s̃1i). (5)

If the test is true, then n1 decrypts s̃1i as follows:

decryptkey1(s̃1i) = s1i||τ2i. (6)
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Then, n1 extracts s1i and τ2i from the decrypted text. It stores
ri = H1(Pi) and s1i in its proof-of-reception database for
future use. This database is maintained at every node on PSD.
It can be considered as a FIFO queue of size M , which records
the reception status for the most recent M packets sent by S.
Finally, n1 assembles Pi||τ2i into one packet and relays this
packet to node n2. In case the test in (5) fails, n1 marks the
loss of Pi in its proof-of-reception database and does not relay
the packet to n2.

The above process is repeated at every intermediate node
nj , j = 1, . . . ,K. As a result, node nj obtains ri and its HLA
signature sji for every packet Pi that the node has received,
and it relays Pi||τj+1i to the next hop on the route. The last
hop, i.e., node nK , only forwards Pi to the destination D. As
proved in Theorem 4 in Section IV-C, the special structure of
the one-way chained encryption construction in (4) dictates
that an upstream node on the route cannot get a copy of
the HLA signature intended for a downstream node, and thus
the construction is resilient to the collusion model defined in
Section III-B. Note that here we consider the verification of the
integrity of Pi as an orthogonal problem to that of verifying
the tag τji. If the verification of Pi fails, node n1 should also
stop forwarding the packet and should mark it accordingly in
its proof-of-reception database.

3) Audit Phase: This phase is triggered when the public
auditor Ad receives an ADR message from S. The ADR
message includes the id of the nodes on PSD, ordered in the
downstream direction, i.e., n1, . . . , nK , S’s HLA public key
information pk = (v, g, u), the sequence numbers of the most
recent M packets sent by S, and the sequence numbers of the
subset of these M packets that were received by D. Recall
that we assume the information sent by S and D is truthful,
because detecting attacks is in their interest. Ad conducts the
auditing process as follows.
Ad submits a random challenge vector c⃗j = (cj1, . . . , cjM )

to node nj , j = 1, . . . ,K, where the elements cji’s are
randomly chosen from Zp. Without loss of generality, let
the sequence number of the packets recorded in the current
proof-of-reception database be P1, . . . , PM , with PM being
the most recent packet sent by S. Based on the information
in this database, node nj generates a packet-reception bitmap
b⃗j = (bj1, . . . , bjM ), where bji = 1 if Pi has been received by
nj , and bji = 0 otherwise. Node nj then calculates the linear
combination r(j) =

∑M
i=1,bji ̸=0 cjiri and the HLA signature

for the combination as follows:

s(j) =
∏

i=1,bji ̸=0

s
cji
ji . (7)

Node nj submits b⃗j , r(j), and s(j) to Ad, as proof of the
packets it has received.
Ad checks the validity of r(j) and s(j) by testing the

following equality:

e(s(j), g) = e(
M∏

i=1,bji ̸=0

H2(i||j)cjiur(j) , v). (8)

If the equality holds, then Ad accepts that node nj received
the packets as reflected in b⃗j . Otherwise, Ad rejects b⃗j and
judges that not all packets claimed in b⃗j are actually received
by nj , so nj is a malicious node. We prove the correctness of
this auditing algorithm in Section IV-C.

Note that the above mechanism only guarantees that a node
cannot understate its packet loss, i.e., it cannot claim the
reception of a packet that it actually did not receive. This
mechanism cannot prevent a node from overly stating its
packet loss by claiming that it did not receive a packet that
it actually received. This latter case is prevented by another
mechanism discussed in the detection phase.

4) Detection Phase: The public auditor Ad enters the
detection phase after receiving and auditing the reply to its
challenge from all nodes on PSD. The main tasks of Ad in
this phase include the following: detecting any overstatement
of packet loss at each node, constructing a packet-loss bitmap
for each hop, calculating the autocorrelation function for the
packet loss on each hop, and deciding whether malicious
behavior is present. More specifically, Ad performs these tasks
as follows.

Given the packet-reception bitmap at each node, b⃗1, . . . , b⃗K ,
Ad first checks the consistency of the bitmaps for any possible
overstatement of packet losses. Clearly, if there is no overstate-
ment of packet loss, then the set of packets received at node
j+1 should be a subset of the packets received at node j, for
j = 1, . . . ,K − 1. Because a normal node always truthfully
reports its packet reception, the packet-reception bitmap of a
malicious node that overstates its packet loss must contradict
with the bitmap of a normal downstream node. Note that
there is always at least one normal downstream node, i.e.,
the destination D. So Ad only needs to sequentially scan b⃗j’s
and the report from D to identify nodes that are overstating
their packet losses.

After checking for the consistency of b⃗j’s, Ad starts con-
structing the per-hop packet-loss bitmap m⃗j from b⃗j−1 and b⃗j .
This is done sequentially, starting from the first hop from S.
In each step, only packets that are lost in the current hop will
be accounted for in mj . The packets that were not received
by the upstream node will be marked as “not lost” for the
underlying hop. Denoting the “lost” packet by 0 and “not lost”
by 1, m⃗j can be easily constructed by conducting a bit-wise
complement-XOR operation of b⃗j−1 and b⃗j . For example, con-
sider the following simple case with three intermediate nodes
(four hops) on the route and with M = 10. Suppose that b⃗1 =
(0, 1, 1, 1, 1, 1, 1, 1, 0, 1), b⃗2 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1), b⃗3 =
(0, 1, 0, 1, 1, 0, 1, 1, 0, 1), and the destination D reports that
b⃗D = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1). Then the per-hop packet-loss
bitmaps are given by m⃗1 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1), m⃗2 =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), m⃗3 = (1, 1, 0, 1, 1, 0, 1, 1, 1, 1), and
m⃗4 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The auditor calculates the autocorrelation function γj for
each sequence m⃗j = (mj1, . . . ,mjM ), j = 1, . . . ,K, as
follows

γj(i) =

∑M−i
k=1 mjkmjk+i

M − i
, for i = 0, . . . ,M−1; j = 1, . . . ,K.

(9)
The auditor then calculates the relative difference between γj
and the ACF of the wireless channel fc as follows

ϵj =

M−1∑
i=0

|γj(i)− fc(i)|
fc(i)

. (10)

The relative difference ϵj is then used as the decision statistic
to decide whether or not the packet loss over the jth hop
is caused by malicious drops. In particular, if ϵj ≥ ϵth,
where ϵth is an error threshold, then Ad decides that there
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is malicious packet drop over the hop. In this case, both
ends of the hop will be considered as suspects, i.e., either
the transmitter did not send out the packet or the receiver
chose to ignore the received packet. S may choose to exclude
both nodes from future packet transmissions, or alternatively,
apply a more extensive investigation to refine its detection.
For example, this can be done by combining the neighbor-
overhearing techniques [12] used in the reputation system. By
fusing the testimony from the neighbors of these two nodes,
Ad can pin-point the specific node that dropped the packet.
Once being detected, the malicious node will be marked and
excluded from the route to mitigate its damage.

The above detection process applies to one end-to-end
path. The detection for multiple paths can be performed as
multiple independent detections, one for each path. Although
the optimal error threshold that minimizes the detection error
is still an open problem, our simulations show that through
trial-and-error, one can easily find a good ϵth that provides a
better detection accuracy than the optimal detection scheme
that utilizes only the pdf of the number of lost packets.
Public Verifiability: After each detection, Ad is required to
publish the information it received from involved nodes, i.e.,
b⃗j , r(j), s(j), for j ∈ PSD, so that a node can verify all
calculation has been performed correctly. Note that no knowl-
edge of the HLA secret key x is required in the verification
process. At the same time, because Ad has no knowledge of
x, there is no way for it to forge a valid HLA signature for
r(j). In other words, Ad cannot claim a misbehaving node to
be a normal one. Furthermore, the privacy-preserving property
of the scheme (see Theorem 4 in Section IV-C) ensures that
publishing the auditing information will not compromise the
confidentiality of the communication.

C. Security Analysis
We prove that the proposed scheme has the following

security properties.
Theorem 1: The verification of r(j) and s(j), as specified in
(8), is correct, i.e., (8) must hold for a (c⃗j , r

(j), s(j)) tuple
that is constructed according to the specification presented in
Section IV-B3.
Proof: The correctness of (8) is shown as follows:

e(s(j), g) = e

 M∏
i=1,bji ̸=0

s
cji
ji , g


= e

 M∏
i=1,bji ̸=0

{H2(i||j)uri}xcji , g


= e

 M∏
i=1,bji ̸=0

{H2(i||j)uri}cji , g

x

= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiucjiri , g

x

= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiur(j) , gx


= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiur(j) , v

 . (11)

So Theorem 1 holds.
Theorem 2: The construction specified in Section IV-B is
secure under the collusion model defined in Section III-B, i.e.,
an adversary that does not receive a packet Pi cannot claim
receiving this packet in its b⃗j by forging a HLA signature for
a random linear combination of the received packets, even if
this adversary colludes with any other malicious node in PSD.
Proof: For a given node nj , our construction essentially
follows the BLS-signature-based HLA construction described
in [27]. Under the implicitly assumed condition of no col-
lusion between attackers, the authors in [27] proved that the
construction is secure, i.e., no adversary can forge a response
to a random challenge if it does not know the HLA signature
of each packet in the linear combination. So here, we only
need to show that collusion between malicious nodes does not
give the attacker more information about the HLA signature
of the packets. This can be shown by observing the following
novel properties of our HLA construction:

1) For a packet Pi, the signature scheme specified in (3)
dictates that its HLA signature sji is not only tied to the
packet sequence number (i), but also related to the node
index (j) that is relaying the packet. This means that for
the same packet, each hop on PSD is given a different
HLA signature. The verification scheme in (8) accounts
for both i and j. In the no-collusion case, by treating
the concatenation of (i||j) as a meta packet sequence
number, the security of our construction can be proved
in the same way as that in [27].

2) The way that the HLA signatures are distributed to nodes
on PSD, as specified in (4), dictates that an upstream
node nj cannot get a copy of the HLA signature sj′i
of a downstream node nj′ , where j < j′ ≤ K, unless
the downstream node nj′ receives the signature sj′i first
on PSD and then sends it through the covert channel to
the upstream node nj . Therefore, there is no way for
a downstream malicious node to get any information
on its HLA signature if the upstream attacker drops the
packet. As a result, the secret information exchange on
the covert channel does not help the adversary to get
more information on its HLA signature than the scenario
where there is no collusion.

Combining the above arguments, Theorem 2 is proved.
Theorem 3: The proposed scheme ensures that the packet-
reception bitmap reported by a node in PSD is truthful.

The validity of Theorem 3 is straightforward, because The-
orem 2 guarantees that the node cannot understate its packet
loss information. At the same time, from our discussion in
Section IV-B4, it is clear that a malicious node cannot overstate
its packet loss either. So a node must report its actual packet
reception information truthfully to Ad.
Theorem 4: Our HLA construction is publicly verifiable and
privacy preserving, i.e., the auditor Ad does not require the
secret key of the HLA scheme to verify a node’s response.
In addition, Ad cannot determine the content of the packets
transmitted over PSD from the information submitted by
nodes.
Proof: Public verifiability is clear from the construction of the
scheme. The privacy-preserving property is guaranteed by the
application of the secure hash function H1. More specifically,
instead of directly computing the HLA signature for a packet
Pi, our construction computes the signature for the image of
the packet ri = H1(Pi). During the auditing phase, Ad can
collect a set of linear combinations of ri’s. So it is possible
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for Ad to calculate ri’s by solving a set of linear equations,
if a sufficient number of combinations are collected. Even if
Ad can recover ri, it should not be able to guess Pi because
of H1’s resilience to the pre-image attack.

D. Overhead Analysis

The proposed scheme requires relatively high computation
capability at the source, but incurs low communication and
storage overheads along the route, as explained below.

1) Computation Requirements: Most of the computation is
done at the source node (for generating HLA signatures) and
at the public auditor (for conducting the detection process).
We consider the public auditor as a dedicated service provider
that is not constrained by its computing capacity. So the
computational overhead should not be a factor limiting the
application of the algorithm at the public auditor. On the
other hand, the proposed algorithm requires the source node
to generate K HLA signatures for a K-hop path for each data
packet. The generation of HLA signatures is computationally
expensive, and may limit the applicability of the algorithm.
We propose a block-based HLA signature and detection mech-
anism in Section V, whereby the processing is based on
block of packets rather than individual packets, to reduce
this computation overhead by multiple folds. We evaluate
the performance of the proposed mechanism by extensive
simulations in Section VI-B4.

2) Communication Overhead: The communication over-
head for the setup phase is a one-time cost, incurred when
PSD is established. Here we mainly focus on the recurring
cost during the packet transmission and auditing phases (there
is no communication overhead in the detection phase). For a
transmitted packet Pi, S needs to send one encrypted HLA
signature and one MAC to each intermediate node on PSD.
Our HLA signature follows the BLS scheme in [7]. So an
HLA signature sij is 160-bit long. If encrypted by DES, the
encrypted signature s̃ij is 192 bits in length (a block in DES
is 64-bit long, so the length of the cipher text of DES is
multiples of 64 bits). The MAC-related hash function HMAC

key
can be implemented in SHA-1 and has a length of 160 bits. So
for each packet, the per-hop communication overhead incurred
by the proposed scheme in the packet transmission phase is
192+160 = 352 bits, or 44 bytes. For a path of K intermediate
hops, the total communication overhead for transmitting a
packet is 44K bytes. For example, when K = 10, the overhead
is 440 bytes/packet. For an IEEE 802.11 system, this is about
19% of the maximum MSDU (2304 bytes).

In the auditing phase, the auditor Ad sends a random
challenge vector c⃗j to each node nj . Let each element in this
vector be a 32-bit integer. The challenge has a length of 4M
bytes. Based on our simulation in Section VI, M = 50 is
typically enough to achieve good detection accuracy. So this
means each challenge can be delivered in one packet. Node nj

replies to the challenge with b⃗j , r(j), and s(j). Among them,
b⃗j is an M -bit bitmap. r(j) is the linear combination of the
SHA-1 image of the packets, so r(j) also has a length of 160
bits. s(j) is an HLA signature of r(j), so it is also 160-bit
long. Overall, the reply from a node to Ad has a length of
320 +M bits, which can also be delivered in one packet.

3) Storage Overhead: During its operation, a node nj on
PSD needs to store the key keyj , the H1 hash image, and the
associated HLA signature for each of the M most recently
received packets. Assuming encryptkey and decryptkey are

based on DES, keyj has a length of 56 bits. Let the hash
function H1 be based on SHA-1. So the H1 image of a packet
is 160-bit long. The HLA signature is based on BLS (Boneh-
Lynn-Shacham) scheme [7] and is 160-bit long. So in total
the storage overhead at nj is 320M + 56 bits, or 40M + 7
bytes. This storage overhead is quite low. For example, when
M ≤ 50, the storage overhead at a node is less than 2 KB.

V. REDUCING COMPUTATION OVERHEAD: BLOCK-BASED
HLA SIGNATURE GENERATION AND DETECTION

As discussed in Section IV-D1, one major limitation of
the proposed baseline HLA detection algorithm is the high
computation overhead of the source node. In this section, we
proposed a block-based solution that can reduce this overhead
by multiple folds. The main idea is to make the HLA signature
scalable: instead of generating per-packet HLA signatures,
per-block HLA signatures will be generated, where a block
consists of L > 1 packets. Accordingly, the detection will
be extended to blocks, and each bit in the packet-loss bitmap
represents a block of packets rather than a single packet. The
details of this extension are elaborated as follows.

In the Packet Transmission Phase, rather than generating
HLA signatures for every packet, now the signatures are based
on a block of packets. In particular, L consecutive packets are
deemed as one block. Accordingly, the stream of packets is
now considered as stream of blocks. Denote the L packets in
block i as Pi1, . . . , PiL, respectively. The source S generates
block-HLA signatures for block i as follows:

1) S computes ri = H1(Pi1). S then computes HLA sig-
natures of ri for node nj , say sji, where j = 1, . . . ,K,
according to (3).

2) For each node nj , S generates L random numbers
κ
(1)
ji , . . . , κ

(L)
ji ∈ Zp, such that

∑L
l=1 κ

(l)
ji = sji. This

could be done, e.g., but first generating L − 1 arbi-
trary numbers and then make the Lth number equal to
sji −

∑L−1
l=1 κ

(l)
ji .

3) For packet Pil, S assigns κ
(l)
ji ’s, j = 1, . . . ,K, as the

block-HLA signatures for node 1, . . . ,K, respectively.
These signatures are then transmitted with packet Pil by
following the one-way chained encryption and decryp-
tion scheme described in (4) through (6).

In line with the above block-HLA signatures, a node nj is
able to compute sji =

∑L
l=1 κ

(l)
ji if and only if it receives

all L packets of block i. Node nj stores ri and sji in its
proof-of-reception database as the proof for block i.

Auditing is now based on blocks. In particular, at node
nj , suppose the sequence number of the blocks recorded in
the proof-of-reception database are B1, . . . , BM . Based on
the information in the database, node nj generates a block-
reception bitmap b⃗j = (bj1, . . . , bjM ), where bji = 1 if and
only if all L packets in block Bi has been received by nj ,
and bji = 0 otherwise. Except the above, Ad still follows the
same algorithm in Section IV-B3 to submit random challenge,
receive response, and verify the truthfulness of the reported
block-reception bitmap.

In the detection phase, the ACF of the wireless channel
needs to be coarsened such that one unit of lag represents L
consecutive packets. This could be done by first coarsening the
packet reception bitmap observed in the training phase using
blocks: L consecutive 1’s are mapped to a 1 in the blocked-
based bitmap, otherwise a 0 will be mapped. The ACF of the
coarsened wireless channel is then compared with the ACF
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of the block-reception bitmap reported by each node to detect
possible malicious packet drops.

From the above description, it is clear that the block-based
HLA signature and detection mechanism can in general reduce
the computation overhead by L folds. However, the coarser
representation of lost packets makes it difficult to accurately
capture the correlation between them. For example, even with
a small block size, say L = 2, it is not possible to tell
whether a block loss is due to the loss of one packet or
both packets in the block, which correspond to very different
packet-loss correlations. Therefore, it is expected that the
reduced computational overhead comes at the cost of less
detection accuracy. We study the performance of the block-
based algorithm in Section VI-B4.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

In this section, we compare the detection accuracy achieved
by the proposed algorithm with the optimal maximum likeli-
hood (ML) algorithm, which only utilizes the distribution of
the number of lost packets. For given packet-loss bitmaps, the
detection on different hops is conducted separately. So, we
only need to simulate the detection of one hop to evaluate
the performance of a given algorithm. We assume packets are
transmitted continuously over this hop, i.e., a saturated traffic
environment. We assume channel fluctuations for this hop fol-
low the Gilbert-Elliot model, with the transition probabilities
from good to bad and from bad to good given by PGB and
PBG, respectively. We consider two types of malicious packet
dropping: random dropping and selective dropping. In the
random dropping attack, a packet is dropped at the malicious
node with probability PM . In the selective dropping attack,
the adversary drops packets of certain sequence numbers. In
our simulations, this is done by dropping the middle N of
the M most recently received packets, i.e., setting the N bits
in the middle of the packet-loss bitmap to 0 (if a packet in
these positions is dropped due to link errors, then the set
of 0’s extends to an extra bit in the middle). PM and N
are simulation parameters that describe the selectivity of the
attack. In both cases, we let ϵth = 10% for the proposed
algorithm.

We are interested in the following three performance met-
rics: probability of false alarm (Pfa), probability of miss-
detection (Pmd), and the overall detection-error probability
(Perror). We collect these statistics as follows. In each run,
we first simulate 1000 independently generated packet-loss
bitmaps for the hop, where packet losses are caused by link
errors only. We execute our detection algorithm over these
packet-loss bitmaps and collect the number of cases where the
algorithm decides that an attacker is present. Let this number
be Ifa. Pfa of this run is calculated as Pfa = Ifa/1000. We
then simulate another 1000 independently generated packet-
loss bitmaps, where losses are now caused by both link errors
and malicious drops. Let the number of cases where the
detection algorithm rules that an attacker is not present be
Imd. Pmd of the underlying run is given by Pmd = Imd/1000.
Perror is given by Perror = (Ifa + Imd)/2000. The above
simulation is repeated 30 times, and the mean and 95%
confidence interval are computed for the various performance
metrics.

B. Results

1) Random Packet Dropping: The detection accuracy is
shown in Figure 4 as a function of the malicious random-
drop rate PM . In each subfigure, there are two sets of curves,
representing the proposed algorithm and the optimal ML
scheme, respectively. In each set of curves, the one in the
middle represents the mean, and the other two represent the
95% confidence interval. In general, the detection accuracy of
both algorithms improves with PM (i.e., the detection error
decreases with PM ). This is not surprising, because malicious
packet drops become more statistically distinguishable as the
attacker starts to drop more packets. In addition, this figure
shows that for ϵth = 10%, the proposed algorithm provides
slightly higher false-alarm rate (subfigure (c)) but significantly
lower miss-detection probability (subfigure (b)) than the ML
scheme. A low miss-detection probability is very desirable in
our context, because it means a malicious node can be detected
with a higher probability. The slightly higher false-alarm rate
should not be a problem, because a false alarm can be easily
recognized and fixed in the post-detection investigation phase.
Most importantly, the overall detection-error probability of
the proposed scheme is lower than that of the ML scheme
(subfigure (a)). We are especially interested in the regime
when PM is comparable to the average packet loss rate due
to link errors, given by PGB

PGB+PBG
= 0.01

0.01+0.5 ≈ 0.02. This
regime represents the scenario in which the attacker hides
its drops in the background of link errors by mimicking the
channel-related loss rate. In this case, the ML scheme cannot
correctly differentiate between link errors and malicious drops.
For example, when PM = 0.01, the ML scheme results in
Pmd = 80% and Pfa = 23%. This is close to arbitrarily
ruling that every packet loss is due to link error only, leading
to an overall detection-error rate of 50% (see subfigure (a)).
Our proposed algorithm, on the other hand, achieves a much
better detection accuracy, because its Pmd and Pfa are both
lower than those under the ML scheme. As a result, when
PM = 0.01, the total detection-error rate of the proposed
algorithm is about 35%. When PM is increased to 0.04,
Perror of the proposed scheme reduces to only 20%, which
is roughly half of the error rate of the ML scheme at the
same PM . Remembering that the detection-error rate of the
ML scheme is the lowest among all detection schemes that
only utilize the distribution of the number of lost packets,
the lower detection-error rate of the proposed scheme shows
that exploiting the correlation between lost packets helps in
identifying the real cause of packet drops more accurately. The
effect of exploiting the correlation is especially visible when
the malicious packet-drop rate is comparable with the link
error rate. Meanwhile, we also note that the 95% confidence
interval of the proposed scheme is wider than that of the
ML scheme. This is because the decision variable ϵj in the
proposed scheme is a second-order function of the random
packet loss process, while the decision variable in the ML
scheme (i.e., number of lost packets) is a first order function of
the same packet loss process. As a result, the decision variable
of the proposed scheme possesses more randomness than that
of the ML scheme, as reflected by the wider 95% confidence
interval.

In Figure 5, we plot the detection accuracy as a function of
the size of the packet-loss bitmap (M). It can be observed that
Perror for the proposed scheme decreases with M . However,
as M becomes sufficiently large, e.g., M = 30 in our case,
a further increase in the size of the bitmap does not lead to
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Fig. 4. Detection accuracy vs. PM (random packet-drop case).
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Fig. 5. Detection accuracy vs. M (random packet-drop case).

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
GB

D
e

te
ct

io
n

−
e

rr
o

r 
P

ro
b

a
b

ili
ty

ML scheme

Proposed scheme

P
M

=0.1, P
BG

=0.5, M=30

(a) Overall detection-error probability

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
GB

M
is

s−
d

e
te

ct
io

n
 P

ro
b

a
b

ili
ty

Proposed scheme

ML scheme

P
M

=0.1, P
BG

=0.5,

M=30

(b) Miss-detection probability

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
GB

F
a

ls
e

−
a

la
rm

 P
ro

b
a

b
ili

ty P
M

=0.1, P
BG

=0.5, M=30

Proposed scheme

ML scheme

(c) False-alarm probability

Fig. 6. Detection accuracy vs. PGB (random packet-drop case).

additional improvement in the detection accuracy. This can be
explained by noting that the two-state Markovian GE channel
model has a short-range dependence, i.e., the correlation be-
tween two points of the fluctuation process decays rapidly with
the increase in the separation between these points. This short-
range dependence is reflected in an exponentially decaying
autocorrelation function for the channel. As a result, a good
estimation of the autocorrelation function can be derived as
long as M is long enough to cover the function’s short
tail. This phenomenon implies that a node does not need to
maintain a large packet-reception database in order to achieve
a good detection accuracy under the proposed scheme. It also
explains the low storage overhead incurred by our scheme.

The detection accuracy is plotted in Figure 6 as a function

of the channel state transition rate PGB . It can be observed
from this figure that Perror for both algorithms increases
with PGB . This is not surprising because at its initial point
of PGB = 0.01, the expected link error rate is about 0.02,
which is much smaller than the malicious packet drop rate of
PM = 0.1. So it is relatively easy to differentiate between the
case where packet drops are caused by link errors only and
the one where such drops are caused by the combined effect
of link errors and malicious drops. As PGB increases, the
link error probability approaches PM , making the statistical
separation of the two cases harder. As a result, the detection
error increases with PGB . For all values of PGB in this figure,
the proposed algorithm always achieves significantly lower
detection-error probability than the ML scheme.
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2) Selective Packet Dropping: The detection error as a
function of the number of maliciously dropped packets is
shown in Figure 7. At the low end of the x-axis, maliciously
dropped packets account for only 1/50 = 2% of the total
packets in the packet-loss bitmap. This is identical to the
link error rate of 0.02, assumed in the simulation. Similar
performance trends can be observed to the case of the random
packet dropping. Fewer detection errors are made by both
algorithms when more packets are maliciously dropped. In
all the simulated cases, the proposed algorithm can detect the
actual cause of the packet drop more accurately than the ML
scheme, especially when the number of maliciously dropped
packets is small. When the number of maliciously dropped
packets is significantly higher than that caused by link errors
(greater than 4 packets in our simulation), the two algorithms
achieve comparable detection accuracy. In this scenario, it
may be wise to use the conventional ML scheme due to
its simplicity (e.g., no need to enforce truthful reports from
intermediate nodes, etc).

The detection errors are plotted in Figure 8 as a function
of the size of the packet-loss bitmap (M ). To conduct a fair
comparison, as we increase M , we also increase the number
of maliciously dropped packets, so as to maintain a malicious
packet-dropping rate of 10%. It can be observed that a small
M is enough to achieve good detection accuracy under the
proposed scheme, due to the short-range dependence property
of the channel.

In Figure 9, the detection errors are plotted as a function of
the channel state transition probability PGB . Similar trends
are observed to those in the random packet dropping case,
i.e., the algorithms make more detection errors when the link
error rate approaches the malicious packet-drop rate. Once
again, the proposed algorithm consistently outperforms the ML
scheme in all the tested cases.

3) Dropping of Control Packets: Our simulations so far
have not made any application-semantic (use case) assumption
on the dropped packets. In reality, however, because these
packets are usually used for control purposes, the loss of these
packets may generate significant impacts on the transmission
of other (i.e., data) packets. In this series of simulations, we
evaluate how the correlation between the control and data
packets affects the performance of the proposed scheme. In
particular, we consider a multi-hop cognitive radio network,
where control packets are exchanged over an end-to-end
path to maintain channel synchronization between consecutive
hops. A control packet contains the channel id that the two
ends of a hop should tune to. The exchange of these packets
could be end-to-end (i.e., the entire path operates over a chan-
nel commonly available to all hops) or local (the path consists
of several segments, each of which operates over a different
channel available only to the hops of that segment). In either
case, the drop of a control packet will disrupt the frequency
synchronization of a hop, so that data packets transmitted over
the hop will be lost until the frequency synchronization is
resumed by the next valid exchange of control packets. In this
simulation, we assume that a random number of ldata data
packets are sent between two consecutive control packets. We
assume that ldata follows geometric distribution with mean
parameter Ldata (i.e., the continuous idle time of a channel
is exponentially distributed, as commonly assumed in the
cognitive radio literature). In addition, we also assume that
an attacker uniformly randomly drops a certain percentage of
the control packets. This percentage and Ldata are parameters

varied in the simulation. Finally, we use the same Gilbert-
Elliot model as previous simulations to generate the wireless
channel.

Figure 10.(a) plots detection accuracy as a function of the
control packet dropping rate. It can be observed that under
the correlated control and data packet losses, the proposed
scheme achieves significantly better detection accuracy than
the ML scheme for all tested control packet dropping rates, a
similar trend to those observed when such correlation is not
considered (e.g., see the random packet drops in Figure 4.(a)).
Meanwhile, it can also be observed from Figures 10.(a) and
4.(a) that, compared with the results of uncorrelated packet
drops, the detection-error probability under correlated packet
losses is in general smaller, indicating that the correlation
between control and data packet losses may help to improve
the detection accuracy. This is true for both schemes. This
is because such correlation further amplifies the distinction
between the statistics of the wireless channel and the malicious
packet drops, making the detection easier.

We study the detection accuracy as a function of average
number of data packets transmitted between two consecutive
control packets (Ldata) in Figure 10.(b). It can be observed
that this parameter has little impact on the ML scheme,
because under a given control packet loss rate, the overall
(control+data) packet loss rate does not change with Ldata.
ML scheme relies on detecting the number of lost packets,
and thus is not affected by Ldata. In contrast, the proposed
scheme may benefit from a larger Ldata: even if the average
detection accuracy does not improve much, its 95% confidence
interval shrinks significantly with Ldata. This is explained by
comparing the packet loss patterns of the wireless channel and
the correlated packet drops. Specifically, on average 2 packets
are lost in a row in a wireless link error (this is given by
1/(1 − PBG) = 1/0.5 = 2), while on average Ldata packets
are lost under each malicious drop. Therefore, the distinction
between the above two packet-loss patterns increases with
Ldata. The proposed scheme exploits such a distinction in
patterns and thus can benefit from larger Ldata.

In Figure 10.(c) we plot the detection-error probability as
a function of channel state transition parameter PGB . It can
be observed that the detection accuracy deteriorates with the
increase of PGB , because it becomes more and more difficult
to decide the actual source of packet loss when link error rate
approaches the malicious packet dropping rate. Once again,
the proposed scheme consistently achieves higher detection
accuracy than ML scheme in all simulated cases.

4) Block-Based Detection: In this series of simulations,
we study the detection accuracy of block-based algorithms
as a function of block size. Figure 11.(a) plots the detection
accuracy for random packet drops under two packet drop
probabilities: high (PM = 0.08) and low (PM = 0.01).
The performance of the ML scheme is also plotted in the
same figure for comparison. In general, it shows that for
both cases the detection error increases with the block size.
This is expected, as a larger block size hides more details
of packet losses, and therefore makes the actual correlation
of lost packets more difficult to calculate. Meanwhile, the
benefits of blocked-based algorithm is also observed: it is able
to trade computation complexity for better detection accuracy.
For example, under low packet dropping rate, it shows that the
block-based algorithm can reduce the computation overhead of
the baseline HLA detection by 10 folds, and still be able to
achieve better detection accuracy than the ML scheme. At high
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Fig. 7. Detection accuracy vs. number of maliciously dropped packets (selective packet-drop case).
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Fig. 8. Detection accuracy vs. M (selective packet-drop case).
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Fig. 9. Detection accuracy vs. PGB (selective packet-drop case).
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Fig. 11. Detection accuracy of block-based algorithms.

packet dropping rate, the block-based algorithm can achieves
a 4× computation overhead reduction, while still achieving
slightly better detection accuracy than the ML scheme.

Figure 11.(b) plots the detection accuracy for random packet
drops under two packet sampling methods. In the first method,
we fix the total number of packets used in the sample, and
therefore the number of sampled blocks varies with the block
size. In the second method, we fix the number of sampled
blocks, but the number of sampled packets changes with the
block size. Note that the amount of computation required to
compute the block-based signatures decreases with the block
size in the first method, but remains the same in the second
method. The second method does not reduce the amount of
computation, rather, it reduces the intensity of the computation
by distributing it over a larger time interval (more packets).
From this figure, it can be observed that under both methods,
the detection accuracy deteriorates with the block size, but the
deterioration is more severe under the first method. This is not
surprising, because in method one the block-reception bitmap
becomes shorter with the increase of block size, and therefore
the computed ACF is less accurate, due to the insufficient
sample size. Meanwhile, it can be observed that, at a detection
accuracy comparable to that of the ML scheme, the second
method achieves 4× computation overhead reduction over the
baseline algorithm, whereas the saving of the first method is
only 2×. This observation suggests that, to maintain a good
detection accuracy, block-based algorithm may be better used
as a way to reduce the computation intensity of the source
node, rather than a way to reduce the absolute amount of the
computation.

Figure 11.(c) plots the detection accuracy for selective
packet drops under two packet dropping rates: high (3 out
of every 50 packets are dropped) and low (1 out of every
50 packets is dropped). A similar trend to Figure 11.a can
be observed. This observation suggests that the property–
block-based algorithm can trade computation complexity for
detection accuracy–is universal (i.e., holds under various attack
models).

VII. CONCLUSIONS

In this paper, we showed that compared with conventional
detection algorithms that utilize only the distribution of the
number of lost packets, exploiting the correlation between
lost packets significantly improves the accuracy in detect-
ing malicious packet drops. Such improvement is especially

visible when the number of maliciously dropped packets is
comparable with those caused by link errors. To correctly
calculate the correlation between lost packets, it is critical to
acquire truthful packet-loss information at individual nodes.
We developed an HLA-based public auditing architecture that
ensures truthful packet-loss reporting by individual nodes.
This architecture is collusion proof, requires relatively high
computational capacity at the source node, but incurs low
communication and storage overheads over the route. To
reduce the computation overhead of the baseline construction,
a packet-block-based mechanism was also proposed, which
allows one to trade detection accuracy for lower computation
complexity.

Some open issues remain to be explored in our future work.
First, the proposed mechanisms are limited to static or quasi-
static wireless ad hoc networks. Frequent changes on topology
and link characteristics have not been considered. Extension to
highly mobile environment will be studied in our future work.
In addition, in this paper we have assumed that source and
destination are truthful in following the established protocol
because delivering packets end-to-end is in their interest.
Misbehaving source and destination will be pursued in our
future research. Moreover, in this paper, as a proof of concept,
we mainly focused on showing the feasibility of the proposed
cypto-primitives and how second-order statistics of packet loss
can be utilized to improve detection accuracy. As a first step in
this direction, our analysis mainly emphasize the fundamental
features of the problem, such as the untruthfulness nature of
the attackers, the public verifiability of proofs, the privacy-
preserving requirement for the auditing process, and the ran-
domness of wireless channels and packet losses, but ignore
the particular behavior of various protocols that may be used
at different layers of the protocol stack. The implementation
and optimization of the proposed mechanism under various
particular protocols will be considered in our future studies.
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