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Abstract—We consider a multi-channel multi-user cognitive
radio MIMO network in which each node controls its antenna
radiation directions and allocates power for each data stream by
adjusting its precoding matrices. Under a noncooperative game, we
optimize the set of precoding matrices (one per channel) at each
node so as to minimize the total transmit power in the network.
Using recession analysis and the theory of variational inequalities,
we obtain sufficient conditions that guarantee the existence and
uniqueness of the game’s Nash Equilibrium (NE). Low-complexity
distributed algorithms are also developed by exploiting the strong
duality of the convex per-user optimization problem. To improve
the efficiency of the NE, we introduce pricing policies that employ
a novel network interference function. Existence and uniqueness
of the new NE under pricing are studied. Simulations confirm the
effectiveness of our joint optimization approach.

Index Terms—Power/spectrum efficiency, beamforming, nonco-
operative game, pricing, cognitive radio, MIMO.

I. INTRODUCTION

Cognitive radios (CRs) improve spectrum utilization by ex-

ploiting temporarily idle frequency bands. The spectral effi-

ciency can be further boosted if CR nodes are equipped with

multiple antennas to leverage communications in the space

dimension through multi-input multi-output (MIMO) commu-

nications. To be more spectrally efficient, available channels

can be shared among several CR links, so that a channel can

be occupied by more than one link at the same time.
Besides the spatial multiplexing gain, a multi-antenna trans-

mitter can also adjust its radiation pattern (beamforming). This

feature is particularly helpful in managing network interference

in a multi-user setting. MIMO transmitters can configure their

radiation patterns to keep interference away from unintended

receivers. Consequently, network throughput (or the power

required to meet the rate demands) can be improved (or saved).

The power allocation over multiplexed data streams as well as

the beam pattern of a MIMO node can be jointly controlled by

tuning the phases and amplitudes of the complex elements of

its precoding matrices [1]. In this paper, we design an optimal

set of precoding matrices (one per channel) for each CR MIMO

node that allocate power over both space/antenna and frequency

dimensions and yield optimal radiation patterns, so that the total

transmit power is minimized subject to given rate demands.

A. Related Works
Most existing works on MIMO ad hoc networks (e.g., [2] [3]

[4] [5]) often overlook the spectrum management aspect and
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do not optimize over the frequency dimension. Even without

beamforming, joint optimization of spectrum and power over

various data streams and channels is challenging. The network-

wide joint power and spectrum allocation problem of a single-

antenna network was recently shown to be NP-hard [6]. In fact,

the number of variables in a MIMO dynamic spectrum sharing

network grows quadratically with the number of antennas.

Hence, if we were to rely on suboptimal solutions, the large

number of variables involved makes it computationally expen-

sive, even for centralized implementation. Other centralized

approaches employing the Nash Bargaining schemes (e.g., [7]

[8]) are also not applicable, as they require global network

information. Given these facts, distributed solutions have been

sought under the framework of noncooperative games [9]. In

such a setup, nodes/links act individually to maximize their

rates (referred to as the rate maximization game) or minimize

the power required to meet given QoS/rate constraints (referred

to as the power minimization game).

Unlike the rate maximization (RM) game where players’

strategic spaces are independent (e.g., [2] [3] [10] [11] [12]

[13] [14]), the power minimization (PM) game exhibits com-

plex coupling between these strategic spaces. Specifically, the

strategic space of a link in the RM game is defined by its

available resources, e.g., power, available channels, antennas,

etc., which do not depend on other players’ actions. In contrast,

in a PM problem with rate constraints, the strategic space of

a player is not only shaped by its resources but also by its

achievable rate, which is a function of the actions of all other

players. For example, it can be proved that the RM game always

admits a NE [10] [12]. In contrast, the PM game may not have

a NE (e.g., the rate demands exceed the network capacity).

Moreover, under power budget constraints, the strategic space

of a player under the PM game can be empty (e.g., when the

power budget is not sufficient to support the rate demand, given

the interference from other transmitters). In the context of a CR

network, the dynamics of primary users (PUs) also affect if a

requested rate can be met or not. Existing PM works tend to

overlook these facts (e.g., [15] [16] [17] [18] [19]), and often

assume the existence of a NE. While the projection method

[20] and the variational inequality theory [2] [11] [21] have

been instrumental in tackling the RM game, these techniques

require nonempty strategic spaces.

Recently, the PM game for SISO networks was tackled

[22], where conditions for the existence and uniqueness of

the NE were established. The application of the methodology

in [22] to MIMO networks with dynamic spectrum sharing

and beamforming is not trivial. First, despite the presence of

complex coupling among the strategic spaces, SISO networks



without beamforming are still amenable to an explicit relation-

ship between the power allocation from different users and the

achievable rate of a given user. This was critical in analyzing the

existence and uniqueness of the NE in [22]. In MIMO systems,

such a relationship is implicit, as power allocation is carried

out through matrix manipulations. Second, the achievable rate

of a link depends not only on how much power is allocated

to that link and its interferers, but also on how they allocate

power over multiple data streams in both space and frequency

dimensions. In the SISO case without beamforming, the power

is radiated equally in all directions. However, using beamform-

ing with multiple antennas, the optimal radiation directions of

a transmitter depends on its channel gain matrices, other links’

channel gain matrices, and their antenna patterns. Moreover,

the existence and uniqueness of the NE in a MIMO game with

pricing has not been studied.

B. Contributions

In this paper, we model the joint problem of power as-

signment, spectrum allocation, and beamforming as a nonco-

operative game. We derive conditions for the existence and

uniqueness of the game’s NE. Intuitively, these conditions are

met if the power budget is sufficient enough to satisfy the

rate demands, the requested rates are not too high to harm PU

receptions, the PUs’ interference to CRs is not too strong, and

the CR interference is not too severe. The four conditions are

quantified in a way that allows a node to instantly decide its

appropriate rate.

Our second contribution is in deriving user-dependent pricing

policies that significantly improve the NE’s efficiency. At

each transmitter, the pricing function uses a diagonal block

pricing-factor matrix to capture the interference effect from

this transmitter to unintended receivers. Intuitively, the pricing

function guides a transmitter to steer its radiation directions

away from unintended receivers. The existence and uniqueness

of the NE under pricing are also investigated.

Third, exploiting the strong duality in convex optimization,

we design a low-complexity distributed algorithm to determine

the set of precoding matrices (best reponse) for each node. The

number of variables in the distributed algorithm is K+2, where

K is the number of frequency bands (hence, the algorithm is

independent of the antenna array size). Simulations show that

the distributed algorithm converges to the unique NE under both

synchronous and asynchronous updates.

Our setup uses full/generalized eigen MIMO precoders. This

differs from a large body of works on MIMO precoder design

(e.g., [15] [23] [24]), where only one data stream is sent from

a MIMO transmitter. In these works, precoders are of rank of

one. In generalized eigencoding, there is no constraint on the

rank of the precoding matrices [16], i.e., several data streams

can be sent simultaneously.

Throughout the paper, (.)∗ denotes the conjugate of a matrix,

(.)H denotes its Hermitian transpose, tr(.) denotes its trace,

|.| denotes its determinant, ||.|| denotes the Euclidean (or

Frobenius) norm, (.)T denotes the matrix transpose. eigmax(.),
eigmin(.), and diags(.) indicate the maximum, minimum eigen-

value, and the diagonal element (s, s) of a matrix, respectively.

sum(.) gives the summation of all elements of the vector.

Matrices and vectors are bold-faced.

II. PROBLEM STATEMENT

A. System Model and the Network-wide Problem

We consider a multi-channel cognitive MIMO network that

coexists with several PU networks in a rich-scattering environ-

ment (to facilitate MIMO spatial multiplexing). The network

consists of N transmitter-receiver pairs (links). Each CR node

is equipped with M antennas. The spectrum to be allocated

is comprised of K orthogonal bands (referred to as channels

or sub-carriers in OFDM) that have central frequencies f1, f2,

. . ., fK . Let ΦN
def
= {1, 2, . . . , N} and ΨK

def
= {1, 2, . . . ,K}

denote the sets of CR links and channels, respectively. Each CR

i can simultaneously communicate over multiple frequencies

(e.g., using non-contiguous OFDM). We impose a half-duplex

constraint on all transmissions.

The transmitter of each CR link can send up to M indepen-

dent data streams over each channel. Let x
(k)
u be an M × 1

column vector, consisting of M information symbols (from M
data streams), sent on link u using the channel with central

frequency fk (hereon also referred to as channel fk for short).

The radiation pattern and power allocation for the M streams

of link u on channel fk are determined by its precoding matrix

T̃
(k)
u . The actual transmit vector on channel fk at the radio

interface is T̃
(k)
u x

(k)
u .

We allow for spectrum sharing among various CR links.

Specifically, for channel fk, the signal vector y
(k)
u at the

receiver of link u is given by:

y(k)
u = H(k)

u,uT̃
(k)
u x(k)

u +
∑

j∈ΦN\{u}
H

(k)
u,jT̃

(k)
j x

(k)
j +Nk (1)

where H
(k)
u,u is a M × M channel gain matrix on channel

fk of link u. Each element of H
(k)
u,u is a multiplication of

a distance- and channel-dependent attenuation term, and a

complex Gaussian variable (with zero mean and unit variance)

that reflects multi-path fading. H
(k)
u,j denotes the cross-channel

gain matrix from the transmitter of link j to the unintended

receiver of link u, u �= j. The second term in (1) represents

interference from transmitters of CR links j �= u that share

channel fk with link u. Nk is an M×1 complex Gaussian noise

vector with covariance matrix Ik = (1+ Ipu(k))I, representing

the floor noise with unit variance plus (whitened) interference

Ipu(k) from PUs on channel fk.

We assume that interference cancellation is not used. A

receiver decodes its data streams by treating interference from

other transmitters as colored noise. The Shannon rate over link

u on channel fk is [1]:

R(k)
u = log |I+ T̃(k)H

u H(k)H
u,u C(k)

u

−1
H(k)

u,uT̃
(k)
u | (2)

where C
(k)
u is the noise-plus-interference covariance matrix at

the receiver of link u over channel fk:

C(k)
u = (1 + Ipu(k))I+

∑
j∈ΦN\{u}

H
(k)
u,jT̃

(k)
j T̃

(k)H
j H

(k)H
u,j .

The total channel rate over all frequencies of link u is:

Ru =
∑

k∈ΨK

R(k)
u . (3)

PU protection is provided in the form of database-authorized
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access and frequency-dependent power masks on CR trans-

mit powers. Note that the FCC [25] recently imposed

power masks even for idle channels, if such channels are

adjacent to PU-occupied channels (e.g., this power mask

is 40 mW for bands adjacent to active TV bands). Let

Pmask
def
= (Pmask(f1), Pmask(f2), . . . , Pmask(fK)) denote the

power mask on various channels, we require:

M∑
s=1

P
(u)
s,k = tr(T̃(k)

u T̃(k)H
u ) ≤ Pmask(fk). (4)

where P
(u)
s,k denotes the power allocated on channel fk (fre-

quency dimension) over antenna s (space dimension) for the

transmitter of link u.

The network-wide power minimization problem under rate

demand cu can be stated as follows:

minimize
{T̃(k)

u ,∀k∈ΨK ,∀u∈ΦN}

∑
u∈ΦN

∑
k∈ΨK

tr(T̃
(k)
u T̃

(k)H
u )

s.t. C1: cu ≤ Ru, ∀u ∈ ΦN

C2: tr(T̃
(k)
u T̃

(k)H
u ) ≤ Pmask(fk), ∀k ∈ ΨK , ∀u ∈ ΦN .

C3:
∑

k∈ΨK

tr(T̃
(k)
i T̃

(k)H
i ) ≤ Pmax.

(5)

B. Game Theoretic Design

The network optimization problem (5) is not convex and

known to be NP-hard [6]. For a transmitter to compute its

optimal set of precoders in a distributed manner with reasonable

complexity, we formulate (5) as a strategic noncooperative

game where the players are the N CR links. These players aim

at maximizing their utilities, defined as the negative of their

power consumption. The game’s strategic space is the union of

the strategic spaces of various players, subject to constraints

C1, C2, C3 in (5). Each player/link u competes against others

by selecting his strategic action of K precoders, denoted by

T̃u
def
= (T̃

(1)
u , T̃

(2)
u , . . . , T̃

(K)
u ). T̃u is an M×KM block matrix,

comprised of K M ×M matrices.

The payoff for player u, given below, is a function of

its action T̃u as well as other players’ actions, T̃−u
def
=

(T̃1, T̃2, . . . , T̃u−1, T̃u+1, . . . , T̃N ):

Uu(T̃u, T̃−u)
def
= −

∑
k∈ΨK

tr(T̃(k)
u T̃(k)H

u ). (6)

The transmitter of each link assigns its power over both the

space and frequency dimensions, and configures its radiation

pattern to maximize its own return. Formally, each CR user u
solves the following problem for its optimal precoders T̃u:

maximize
{T̃(k)

u ,∀k∈ΨK}
Uu(T̃u, T̃−u)

s.t. C1’: Ru ≥ cu

C2’: tr(T̃
(k)
u T̃

(k)H
u ) ≤ Pmask(fk), ∀k ∈ ΨK

C3’:
∑

k∈ΨK

tr(T̃
(k)
u T̃

(k)H
u ) ≤ Pmax.

(7)

III. EXISTENCE AND UNIQUENESS OF THE NE

Intuitively, three factors affect the existence of a NE of (7):

Network (multi-user) interference, PU protection requirement

(through power masks), and nodes’ power budget. To deal with

the network interference, we first remove the power mask and

power budget constraints (these constraints will be incorporated

later) and have the following problem:

minimize
{T̃(k)

u ∀k∈ΨK}

∑
k∈ΨK

tr(T̃
(k)
u IT̃

(k)H
u )

s.t. C1’ as in problem (7).
(8)

We rewrite the precoding matrix T̃
(k)
u as follows:

T̃(k)
u = T(k)

u ×P
(u)
k

1/2
(9)

where T
(k)
u is an M×M matrix with unit-norm column vectors,

specifying the directions to which the antenna array of node u

points its beams. P
(u)
k is an M ×M diagonal matrix whose

entry (s, s) is the power allocated for sub-channel (s, k), P
(u)
s,k .

Both T
(k)
u and P

(u)
k shape the antenna patterns.

At a NE, let p
(k)
u

def
= (P

(u)
1,k , P

(u)
2,k , . . . , P

(u)
M,k) be a 1 × M

nonnegative vector, which denotes the power allocation vec-

tor of link u on M antennas at frequency fk. Let pu
def
=

(p
(1)
u ,p

(2)
u , . . . ,p

(K)
u ) be a 1×MK vector, which denotes the

power allocation on all antennas and frequencies of link u. Let

p
def
= (p1,p2, . . . ,pN ) ∈ RNKM

+ denote the power allocation

on all antennas and frequencies of all players.

We observe that the unit matrix I is positive definite, so the

objective function in (8) is non-decreasing in every element of

pu. In other words, at a NE of the game (if one exists), the

inequality constraint C1’ becomes equality. Otherwise, one can

still lower the power consumption to achieve a smaller value

for the objective function while meeting the rate demand. This

fact defines a feasible set for p, denoted by Qfeasible(c), corre-

sponding to a given requested rate profile c
def
= (c1, c2, . . . , cN )

at a NE. For a given rate profile c, the game (8) has at least

one bounded NE and only bounded NEs, if Qfeasible(c) is

nonempty and bounded.

Theorem 1: Let Gk be defined in (11). If Gk is a P-matrix1

∀k ∈ ΨK , then Qfeasible(c) contains at least one bounded

vector p ∈ RNKM
+ and only bounded vectors p. In other words,

the game (8) admits at least one bounded NE and only bounded

NEs.

Proof: We first claim that Qfeasible(c) contains at least one

bounded vector p ∈ RNKM
+ or the existence of a bounded NE

to the game (8):

Lemma 1: Given that Gk is a P-matrix ∀k ∈ ΨK , then there

exists at least one bounded vector p ∈ Qfeasible(c) ∈ RNKM
+ .

Proof: See [27]. �
The remaining task is to show that the game (8) admits only

bounded NEs or Qfeasible(c) is bounded. For that, we rely on

the concept of asymptotic cone of a nonempty set in recession

analysis [28], as follows.

For a nonempty set Q ∈ RN
+ , its asymptotic cone, denoted

by Qasymp, consists of vectors d ∈ RN
+ , referred to as limit

directions. Each limit direction vector d is defined through the

existence of a sequence of vectors pn ∈ Q and a sequence of

scalars νn tending to +∞ such that [28]:

lim
n→∞

pn

νn
= d. (14)

1A matrix is a P-matrix if all of its principal minors are positive [26].
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Qfeasible(c)
def
=

{
p ∈ RNKM

+ |Ru(p)
def
=

∑
k∈ΨK

log |I+ T̃(k)H
u H(k)H

u,u C(k)
u

−1
H(k)

u,uT̃
(k)
u | = cu, ∀u ∈ ΦN

}
(10)

Gk
def
=

⎡
⎢⎢⎢⎢⎢⎢⎣

|H(k)H
11 H

(k)
1,1|

1
M −(2c1 − 1)

tr(H(k)H
1,2 H

(k)
1,2)

M · · · −(2c1 − 1)
tr(H(k)H

1,N H
(k)
1,N )

M

−(2c2 − 1)
tr(H(k)H

2,1 H
(k)
2,1)

M |H(k)H
2,2 H

(k)
2,2|

1
M · · · −(2c2 − 1)

tr(H(k)H
2,N H

(k)
2,N )

M
...

...
. . .

...

−(2cN − 1)
tr(H(k)H

N,1 H
(k)
N,1)

M −(2cN − 1)
tr(H(k)H

N,2 H
(k)
N,2)

M · · · |H(k)H
N,N H

(k)
N,N |

1
M

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

Qasymp(c)
def
=

{
d ∈ RNKM

+ |∃{pn} ∈ Qfeasible(c) and {νn} → +∞ so that lim
n→∞

pn

νn
= d

}
(12)

Q(c)
def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d ∈ RNKM

+ |R′
u(d)

def
=
∑

k∈ΨK

log

⎛
⎜⎜⎜⎝1 +

tr(T̃
(k)H
u T̃

(k)
u )|H(k)H

u,u H
(k)
u,u| 1

M∑
j∈ΦN\{u}

tr(H(k)H
u,j H

(k)
u,j)

M tr(T̃
(k)H
j T̃

(k)
j )

⎞
⎟⎟⎟⎠ ≤ cu, ∀u ∈ ΦN

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

The set Q is bounded if its asymptotic cone Qasymp con-

tains only the zero vector 0 [28]. Applying this to the set

Qfeasible(c), the game (8) admits only bounded NEs if its

asymptotic cone Qasymp(c) contains only the zero vector. The

asymptotic cone Qasymp(c) is formally defined in (12).
Given that Qfeasible(c) has at least one bounded p (Lemma

1), it is clear that the vector zero 0 belongs to its asymptotic

cone Qasymp(c) (by the definition of limit directions). We now

construct a set Q(c) of which Qasymp(c) is a subset and prove

that Q(c) = {0} if Gk is a P-matrix ∀k ∈ ΨK .
Lemma 2: If d ∈ Qasymp(c) then d belongs to Q(c),

defined in (13).
Proof: See [27]. �

Assuming that there exists at least one d �= 0 and that d ∈
Q(c), then ∀u ∈ ΦN :

log

⎛
⎜⎜⎜⎝1 +

tr(T̃
(k)H
u T̃

(k)
u )|H(k)H

u,u H
(k)
u,u| 1

M∑
j∈ΦN\{u}

tr(H(k)H
u,j H

(k)
u,j)

M tr(T̃
(k)H
j T̃

(k)
j )

⎞
⎟⎟⎟⎠ ≤ cu

(15a)

tr(T̃(k)H
u T̃(k)

u )|H(k)H
u,u H(k)

u,u|
1
M− (15b)

(2cu−1)
∑

j∈ΦN\{u}
tr(T̃

(k)H
j T̃

(k)
j )

tr(H
(k)H
u,j H

(k)
u,j)

M
≤ 0

(15c)

Gk × [tr(T̃
(k)H
1 T̃

(k)
1 ), . . . , tr(T̃

(k)H
N T̃

(k)
N )]T ≤ 0. (15d)

As Gk is a P-matrix for all k ∈ ΨK and

[tr(T̃
(k)H
1 T̃

(k)
1 ), . . . , tr(T̃

(k)H
u T̃

(k)
u ), . . . , tr(T̃

(k)H
N T̃

(k)
N )]T

is a nonnegative vector, (15d) implies that tr(T̃
(k)H
u T̃

(k)
u ) =

0 ∀u ∈ ΦN and ∀k ∈ ΨK [26] or d = 0. This contradicts

the above assumption. Hence, Q(c) and its subset Qasymp(c)
equal to {0}. Theorem 1 is proved. �

We now give some intuitions behind Theorem 1. If the

diagonal elements of Gk are positive, then a sufficient condition

for Gk to be a P-matrix is |Gk(u, u)| ≥
∑
j �=u

|Gk(u, j)| (i.e.,

row diagonally dominant) [26]. Hence, the following inequality

guarantees that game (8) has at least one bounded NE and only

bounded NEs:

Mdet(H
(k)H
u,u H

(k)
u,u)

1
M∑

j∈ΦN\{u}
tr(H

(k)H
u,j H

(k)
u,j)

≥ (2cu − 1) ∀ k ∈ ΨK , ∀ u ∈ ΦN .

(16)

The nominator of the LHS in (16) represents the strength

of the channel gain matrix of link u on channel fk, while

its denominator describes the strength of cross-(interfering)

channel gain matrices from other links j, j �= u, on the

receiver of link u. First, for the game (8) to have at least one

NE (at which the required powers of all links are bounded),

the multi-user interference in each channel fk should not be

too strong. Second, the acceptable multi-user interference is

explicitly quantified in (16), and is a function of the rate demand

cu of each link u. For higher rate demands, inequality (16)

becomes stringent, meaning that lower multi-user interference

is necessary. Hence, inequality (16) can be used as a criterion

to reject or admit a newly requested transmission/rate. When

links set their target rate too high that inequality (16) does not

hold, a bounded NE may not exist. In this case, nodes keep

increasing their transmit powers to meet their rate demands.

Network interference becomes more severe and no link reaches

its requested rate (interference-limited communications).

To better interpret inequality (16), recall that each element

of channel gain matrices in (16) is the product of a complex

Gaussian variable with zero mean and unit variance (in the

H̄
(k)
u,u matrix) and the distance-dependence attenuation factor:

H
(k)
u,u = 1√

dn
u,u

H̄
(k)
u,u where n is the free-space attenuation factor

and du,u is the transmission distance of link u. Inequality (16)

can be rewritten as:

Mdet(H̄
(k)H
u,u H̄

(k)
u,u)

1
M∑

j∈ΦN\{u}

dn
u,u

dn
u,j

tr(H̄
(k)H
u,j H̄

(k)
u,j)

≥ (2cu − 1) ∀ k ∈ ΨK , ∀ u ∈ ΦN .

(17)

(17) holds if the distance between the transmitter and the

receiver is small enough compared with distances between the

receiver and its interferers, the channel gain matrix of link u is

full-rank (this is often the case in a rich-scattering environment)
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and its requested rate is not too high.

Given the existence of bounded NEs to the game in (8), we

now incorporate the power mask and power budget constraints

in the following theorem.

Theorem 2: The game (7) admits at least one bounded NE

and only bounded NEs if Gk is a P-matrix and the vector-

inequality below holds element-by-element ∀k ∈ ΨK and ∀u ∈
ΦN :

G−1
k ×

⎡
⎢⎢⎢⎣

2c1 − 1
2c2 − 1

...

2cN − 1

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

Pmask(fk)

1+Ipu(k)
Pmask(fk)

1+Ipu(k)

...
Pmask(fk)

1+Ipu(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

and sum(Pu) ≤ Pmax

(18)

where

Pu
def
=

⎡
⎢⎢⎢⎣

(1 + Ipu(1))G
−1
1 (u, :)

(1 + Ipu(2))G
−1
2 (u, :)

...

(1 + Ipu(K))G−1
K (u, :)

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

(2c1 − 1)
(2c2 − 1)

...

2cN − 1

⎤
⎥⎥⎥⎦

and G−1
k (u, :) is the uth row of the inverse of matrix Gk

2.

Proof: See [27]. �
From (18), if PUs are more active on a given channel (higher

Ipu(k)), the inequality becomes stricter. This means that CRs

should reduce their transmission power on this channel to avoid

interfering PUs. Moreover, as the inequality becomes tighter

(smaller LHS of (18)) when PUs become more active, it is

less likely for a NE to exist. Hence, besides the PU protection

requirement, inequality (18) also shows the interference effect

from PUs to CRs.

So far, we have derived conditions that capture the factors

that affect the existence of a NE of the game (7). The conditions

in Theorem 1 ensure that network interference is mild enough to

support the requested rates. The conditions in the first inequality

in Theorem 2 enforce that the requested rates are not too

high to harm PUs reception given PUs’ activities (indirectly

captured by PUs’ interference). The last inequality in Theorem

2 guarantees that rate demands are affordable given nodes’

power budgets.

Interestingly, if one removes the resource and PUs protection

constraints and sets the number of antenna to be one, the

conditions in Theorem 1 reduce to the conditions derived

for the NE existence in single-antenna (legacy) networks (in

Theorem 5 of [22]). Moreover, the authors of [22] proved that

their sufficient conditions become necessary when K = 1 and

M = 1, i.e., a single-channel SISO network (Proposition 11

of [22]). They also showed that for the case K = 1 and

M = 1, their sufficient conditions are identical to those in [29].

Hence, though we cannot show that the sufficient conditions

in Theorems 1 and 2 are also necessary in general cases, the

following corollary gives a sense of how tight the conditions

in Theorem 1 are.

Corollary 1: If M = 1, the conditions in Theorem 1

become the sufficient for the NE existence derived for the SISO

network in [22]. Furthermore, If K = 1, then the sufficient

2Since Gk is a P-matrix, it is invertible.

conditions for a NE existence in Theorem 1 become necessary

and identical to those in [29].

One may be curious about the relation between the NE

existence and the fulfillment of rate demands. The following

theorem shows that if the requested rates can be supported,

then a NE must exist.

Theorem 3: If rate demands are supported, then the game

(7) admits at least one NE.

Proof: See [27]. �
Theorem 3 also points out that a NE does not exist only if the

requested rates are not met. In such a case, players whose rates

are not achieved have to reduce their demands (or even leave

the game to reduce network interference and facilitate other

links’ transmissions), and then repeat game (7). Investigating

this process would require a repeated game, which is left for a

future work.

To analyze the uniqueness of the NE, we resort to variational

inequalities theory, casting (7) as a variational inequalities (VI)

problem. A tutorial on the application of VI to communication

systems can be found in [21].

Theorem 4: If game (7) has a NE, then this NE is unique.

Proof: We prove that the mapping of the equivalent VI problem

of (7) is continuous uniformly-P function. Hence, if a NE exists,

it is unique. See [27] for details. �
Theorem 4 indicates that (7) does not have multiple NEs.

Hence, the NE existence condition of (7) is also the NE

uniqueness condition (formally stated in Theorem 5 below).

Theorem 5: If the conditions in Theorem 2 hold, then there

exists a unique NE of the game (7).

IV. BEAMFORMING GAME WITH PRICING

A. Pricing Policy Design

The social welfare of a noncooperative game can be im-

proved with appropriate pricing/taxation policies [30] that make

players more responsible for their actions. For our joint power

allocation, spectrum management, and beamforming game, the

utility function with price for link u is given by:

U
′
u(T̃u, T̃−u)

def
= Uu(T̃u, T̃−u)− Fu(T̃u) (19)

where F (T̃u) is the pricing function for link u. The goal for

player u is:

maximize
{T̃(k)

u ∀k∈ΨK}
U

′
u(T̃u, T̃−u)

s.t. C1’, C2’, C3’ as in problem (7).
(20)

Efficient pricing policies, which adapt to each individual

player, can be designed by forcing the solution obtained from

running per-user optimization problems in (20) to converge to

a locally optimal solution of the network-wide (nonconvex)

problem (5). This can be realized by using the K.K.T. conditions

[31] to equate the stationary points of (20) to those of (5)

(examples of this approach can be found in [12] and [10]). To

ease the complexity of this procedure, the pricing functions are

often linear [32]. However, in our case, following this procedure

leads to a pricing function that depends on global information

and the Lagrangian multipliers of (5) [33]. Such pricing policies

are not suitable for distributed implementation.

The idea of characterizing and minimizing the total network

interference of MIMO MANETs was first introduced in [15]
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for the case of beamforming, and then extended to generalized

eigencoding in [16]. Network interference models in [15] and

[16] are generalized forms of the total squared correlation

function in CDMA systems [34]. However, the models in [15]

and [16] are implicitly developed for full-duplex devices (the

precoders are found to satisfy the data rate requirement in both

directions). From a game theoretic point, precoders in [15]

and [16] are obtained by introducing a pricing function that

depends on the noise-plus-interference covariance matrices at

both ends of the link. This approach is not applicable to half-

duplex networks. Via simulations, we find that this approach

is unstable and power-inefficient when applied to half-duplex

MIMO transceivers.

In this work, we propose to quantify the network interference

by the trace of all interference-plus-noise covariance matrices at

all receivers. We refer to this trace as the Network Interference

Function (NIF):

NIF
def
= tr{

∑
u∈ΦN

∑
k∈ΨK

C(k)
u }

= KN(1 + Ipu(k))tr(I) +
∑

u∈ΦN

tr
[
T̃H

u ×Au × T̃u

]
.

(21)

where Au is a KM × KM block diagonal matrix. The kth

block A
(k)
u =

∑
i∈ΦN\{u}

H
(k)H
i,u H

(k)
i,u is an M × M positive-

semidefinite matrix.

NIF has the same physical unit as power (Watt). For single-

antenna case, NIF is nothing but the total interference that

transmitters induce on unintended receivers. However, in a

SISO network, as transmissions are omnidirectional, we do

not have the freedom to configure the radiation pattern to

minimize NIF. For MIMO transmitters, first recall that the trace

of a matrix is the sum of its eigenvalues. Additionally, for the

existence of a NE, inequality (16) partially states the upper

bound on the total channel gains from interferers, regardless

of the transmit powers from these transmitters. Hence, NIF

captures the effective interference from a transmitter to its

unintended receivers for a given selection of precoders.

From (21), we observe that if each transmitter avoids as

much as possible interfering with other receivers, captured by

the trace of interference-plus-noise covariance matrices, NIF is

then minimized. Intuitively, the transmitter can realize that by

selecting its precoders such that the antenna’s radiation beams

are kept away as much as possible from unintended receivers.

Hence, we now propose the following pricing function for link

u:

F (T̃u) = tr
[
T̃H

u AuT̃u

]
. (22)

Au is referred to as the pricing-factor matrix of CR link u and

A
(k)
u is referred to as the pricing-factor submatrix at channel fk

of link u. The per-user optimization problem (20) at transmitter

u becomes:

maximize
{T̃(k)

u ∀k∈ΨK}

{
− ∑

k∈ΨK

tr(T̃
(k)
u [I+A

(k)
u ]T̃

(k)H
u )

}

s.t. C1’, C2’, C3’ as in problem (7).

(23)

Note that to obtain its pricing function, a transmitter needs

to know the channel matrix from itself to other receivers in its

neighborhood. This information can be obtained by overhearing

signalling packets at the MAC layer.

B. NE Characterization under Pricing

Because matrix A
(k)
u is positive semi-definite, I + A

(k)
u is

positive definite. In addition, the strategic space Q of the game

(23) is identical to that of the game (7) (without pricing). One

can apply the analysis of the game (7) and obtain the same

conditions as in Theorem 2 for the NE existence of the game

(23). The remaining task is to investigate the uniqueness of this

NE. Following a similar procedure to the one in [35], one can

map the game (23) to a VI(Q, F̄ ) problem with:

F̄u
def
= −∇U

′
u(T̃u, T̃−u) = [(A(1)

u +I)T̃(1)
u , . . . , (A(K)

u +I)T̃(K)
u ].

(24)

Let T̃
def
= [T̃1× . . .× T̃N ] and T̃′ def

= [T̃′
1× . . .× T̃′

N ] be two

different strategy sets of the strategic space of the game (23).

We have:

vec(T̃u − T̃′
u)

T vec(F̄ (T̃u)− F̄ (T̃′
u))

≥
∑

k∈ΨK

eigmin(A
(k)
u + I)||vec((T̃(k)

u − T̃′(k)
u ))||2 (25a)

≥ α||vec((T̃u − T̃′
u))||2 (25b)

where vec is defined in (29) and α
def
= min

k

{
eigmin(A

(k)
u + I)

}
.

We use the fact that ||Aa|| ≤ eigmax(A)||a|| and the triangular

inequality in (25a) and (25b), respectively.

Since A
(k)
u + I is positive definite, eigmin(A

(k)
u + I) > 0,

meaning that the VI(Q, F̄ ) problem or the game (23) has a

unique NE. The following theorem summarizes our findings.

Theorem 6: The conditions in Theorem 2 guarantee that the

beamforming game with pricing (23) has a unique NE.

V. BEST RESPONSE AND DISTRIBUTED ALGORITHM

A. Optimal Radiation Directions and Power Allocation

We now solve the individual utility optimization problems (7)

(without pricing) and (23) (with pricing). From these solutions,

user u can determine its best response T̃u = BRu(T̃−u). A

solution to (7) can be obtained from that of (23) by setting the

pricing-factor matrix to zero. Hence, we focus on solving (23).

Observe that the number of variables in problem (23) (herein

referred to as the primal problem) is much greater than that in

its dual problem (2KM2 compared with K +2). Additionally,

recalling the convexity of (23) and that the Slater’s conditions

can easily be shown to hold [31], strong duality holds for

problem (23). A great deal of computational complexity can be

saved by solving the dual problem of (23), instead of solving

the primal one if the derivation of a closed-form dual function is

not cumbersome [31]. Fortunately, the problem (23) possesses

a special structure, which enables us to apply the Hadamard

inequality to analytically derive its dual function. The dual

problem of (23) is as follows:

DP: minimize
{λu}

D(λu) (30)

where λu
def
= (λ

(0)
u , λ

(1)
u , . . . , λ

(K+1)
u ) is a 1× (K+1) vector of

dual variables (the Lagrangian multipliers of the primal problem
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Lu(T̃u,λu) = −
∑

k∈ΨK

tr(T̃(k)H
u [I+A(k)

u ]T̃(k)
u )−λ(0)

u (cu−Ru)−
∑

k∈ΨK

λ(k)
u (tr(T̃(k)H

u T̃(k)
u )−Pmask(fk))−λ(K+1)

u (
∑

k∈ΨK

tr(T̃(k)H
u T̃(k)

u )−Pmax)

(26)

Lu(T̃u,λu) =
∑

k∈ΨK

M∑
s=1

(
−P (u)

s,k diags(Λ
(k)
u ) + λ(0)

u log(1+P
(u)
s,k diags(Υ

k
u))

)
+

∑
k∈ΨK

(
λ
(K+1)
u

K
Pmax + λ(k)

u Pmask(fk)−
λ
(0)
u

K
cu

)

(27)

D(λu) =
∑

k∈ΨK

(
M∑
s=1

(λ(0)
u log

λ
(0)
u diags(Υ

(k)
u )

diags(Λ
(k)
u )

−λ(0)
u +

diags(Λ
(k)
u )

diags(Υ
(k)
u )

) + (
λ
(K+1)
u

K
Pmax+λ(k)

u Pmask(fk)−
λ
(0)
u

K
cu)

)

∀s, k such that λ(0)
u diags(Υ

(k)
u ) > diags(Λ

(k)
u ) > 0.

(28)

vec(T̃u)
def
=

[
�[vec(T̃(1)

u )]
T
, ...,�[vec(T̃(K)

u )]
T
,
[vec(T̃(1)

u )]
T
, ...,
[vec(T̃(K)

i )]
T
]
↔ x ∈ R2KMM (29)

(23)) and D(λu) is the dual function, defined as:

D(λu)
def
= max

{T̃(k)
u ,∀k∈ΨK}

Lu(T̃u,λu). (31)

with Lu(T̃u,λu) being the Lagrangian function (equation (26))

of problem (23).

Theorem 7: If the game (7) admits at least one NE, then

at the achieved NE, the M × KM block matrix T̃u that

solves the individual utility optimization problem (7) (for the

user’s best response) must have its kth block, the matrix T̃
(k)
u ,

in a form of the generalized eigen matrix of the matrices

H
(k)H
d(u),uC

(k)
d(u)

−1
H

(k)
d(u),u and I(1+λ

(k)
u +λ

(K+1)
u )+A

(k)
u , where

λ
(k)
u and λ

(K+1)
u are the optimal Lagrange multipliers of (23).

In other words, the following equation must hold ∀k ∈ ΨK for

a M ×M diagonal matrix Π
(k)
i :

H(k)H
u,u C(k)

u

−1
H(k)

u,uT̃
(k)
u = [I(1+λ(k)

u +λ(K+1)
u )+A(k)

u ]T̃(k)
u Π(k)

u .
(32)

Proof: See [27]. �
Theorem 7 provides a class of matrices that the solutions of

(23) must belong to. This class tells the directions that user

u should point its beams to. Specifically, from (9), if a unit-

norm column matrix T
(k)
u satisfies (32), so does matrix T̃

(k)
u ,

for variable power allocation matrices P
(u)
s,k . The matrix T

(k)
u

can be found by normalizing the generalized eigen matrix T̃
(k)
u .

The next step is to find the optimal power allocation P
(u)
s,k for

the set of KM data streams. Since T̃
(k)
u is the generalized eigen

matrix of the matrices H
(k)H
d(u),uC

(k)
d(u)

−1
H

(k)
d(u),u and I(1+λ

(k)
u +

λ
(K+1)
u )+A

(k)
u , it also diagonalizes each of the two matrices

as follows [36]:

T(k)H
u [H(k)H

u,u C(k)
u

−1
H(k)

u,u]T
(k)
u = Υ(k)

u

and T(k)H
u [A(k)

u + (1 + λ(K+1)
u + λ(k)

u )I]T(k)
u = Λ(k)

u

(33)

where Υ
(k)
u and Λ

(k)
u are M ×M diagonal matrices.

Though its columns have unit-norm, T
(k)
u in general is not

an orthonormal matrix, as A
(k)
u is not similar to I. T

(k)
u (thus

T̃
(k)
u ) does not necessarily diagonalize A

(k)
u . This observation

shows that though the optimal power and spectrum allocation

over KM data streams seems very similar to a general water-

filling problem [37] with multiple water levels (one water level

per channel), it cannot be solved by the algorithms developed

in [37] [38]. The general water-filling algorithm works only if

A
(k)
u is a null matrix, which is game (7) without pricing.

Plugging (33) into the Lagrangian function (26), we have

(27). The optimal power allocation P
(u)
s,k for stream (s, k)

that maximizes the above (concave) function Lu(T̃u,λu) is

found at a (unique) stationary point, specified by the following

equation:

∂Lu(T̃u,λu)

∂P
(u)
s,k

= −diags(Λ
(k)
u ) + λ(0)

u

diags(Υ
k
u)

1 + P
(u)
s,k diags(Υ

k
u)

= 0.

(34)

Thus,

P
(u)
s,k = max

(
0,

λ
(0)
u diags(Υ

(k)
u )− diags(Λ

(k)
u )

diags(Υ
(k)
u )diags(Λ

(k)
u )

)
. (35)

So far, we have obtained the optimal radiation directions,

the matrix T
(k)
u , and the optimal power allocation P

(u)
s,k as

a function of a given set of Lagrangian multipliers λ
(k)
u .

Plugging them into (27), we obtain the dual function in (28).

Notice that the dual problem (with its objective function in

(28)) is convex. Hence, it can be solved by standard methods

(e.g., interior point or gradient/sub-gradient algorithms) for the

optimal Lagrangian multipliers λ
(k)
u . The above analysis is

summarized in Algorithm 1. We emphasize that by exploiting

the strong duality, this algorithm needs only to deal with K+1
variables, instead of 2KM2 variables for the primal problem

(23).

Another issue is whether the game converges to a NE while

running Algorithm 1. The convergence speed depends on how

players update their response. Typically, there are two types

of updating mechanisms: synchronous (sequential/Gauss-Seidel

and parallel/Jacobi) and asynchronous updates. In the sequential

update, players take turns in updating their parameters. In

the parallel update, all players respond simultaneously (see

Algorithm 1). To maintain synchronous updates, nodes have

to be in synch and honor the updating rule. This can be

realized by any coarse synchronization method. In contrast, in
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Algorithm 1 Distributed algorithm to compute the best pre-

coders T̃u(t+ 1) at node u and time (t+ 1)

1: Input:
T̃−u = [T̃1(t + 1), ..., T̃u−1(t + 1), T̃u+1(t), ..., T̃N (t)]
with Gauss-Seidel iteration
T̃−u = [T̃1(t), ..., T̃u−1(t), T̃u+1(t), ..., T̃N (t)]
with Jacobi iteration

2: Initialize
T̃

(k)
u (t+ 1)← T̃

(k)
u (t),λu ← 0

3: while true do
4: Iteratively solve the dual problem (30)
5: If the duality gap is zero, break
6: end while
7: Plug λu into (32) (Theorem 7) to find T

(k)
u by nomarlizing

the generalized eigen matrix. P
(i)
s,k is found from (33), (35).

Optimal precoders T̃
(k)
u is found from (9).

8: RETURN T̃
(k)
u (t+ 1), ∀k ∈ ΨK at time (t+ 1)

an asynchronous update, nodes send their responses following

an arbitrary order or even skip response for a finite duration.

Though we cannot prove the convergence under the Jacobi

and asynchronous iterations, simulations show that Algorithm 1

converges under all above updating policies. The convergence

under the Gauss-Seidel iteration is claimed in the following

theorem.

Theorem 8: Under the sequential update (Gauss-Seidel),

Algorithm 1 drives the game (23) to its unique NE.

Proof: See [27]. �

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the conditions for the

existence and uniqueness of a NE of the distributed algorithm

in Theorem 2 and the effectiveness of the proposed joint beam-

forming and power/spectrum management. Nodes are equipped

with 4 antennas. The simulation results are averaged over 40
runs. In each run, N links are randomly placed in a square area

of length 100 meters. We set Pmax = 1000 mW and the power

mask Pmask = 0.5Pmax for all channels. The channel fading

is flat with free-space attenuation factor of 2. The spreading

angles of the signal at the receive antennas vary from −π/5 to

π/5. The channel bandwidth is 16 MHz. The close-in distance

is 1 m. The thermal floor noise is −174 dBm/Hz. The PUs

interference on all channels is −100 dBm/Hz. We also assume

that links have identical rate demands.

For a given simulation run, there is a probability that the

conditions in Theorem 2 hold and the game converges to a

unique NE. Recall that these conditions are sufficient but not

necessary, so when these conditions do not hold, a unique NE

may still exist. Fig. 1(a) depicts the probability (percentage of

runs) that the game converges to a NE (a NE exists) versus

the rate profile when 10 links are active and 10 channels are

used. As the rate demand increases, the probability that a NE

exists decreases. This is because the conditions in Theorem 2

become more stringent. Fig. 1(b) depicts the probability that

a NE exists versus N when the rate demand is 1 bps/Hz. As

N increases, the network/multi-user interference becomes more

severe, so there is a less chance of meeting the conditions in

Theorem 2. Thus, the probability of a NE existence decreases.

(a)

(b)

Fig. 1. (a) Probability of NE existence vs. rate demands, (b) Probability of
NE existence vs. number of links.

In both Fig. 1(a) and 1(b), the distributed algorithm with

pricing has a higher chance of converging to a NE than the

one without pricing. This sounds counter-intuitive, as both

games have the same sufficient conditions for the existence

of a NE. However, the proposed pricing function helps reduce

the required power (see below). Moreover, the conditions in

Theorem 2 are sufficient but not necessary. Then, when these

conditions do not hold, there is still a higher chance for the

lower-power consumption algorithm to secure a NE than the

one that requires higher power.

To evaluate the total power consumption, we simulate a

network of 8 links with a rate demand of 1 bps/Hz. Other

parameters are as above. Fig. 2 compares the total required

power (averaged over converged runs) under the game (7) and

the game (23) (with pricing) with two other algorithms. The

first one is when we evenly divide the total power budget and

the rate demand over all available bands and separately apply

the pricing policy with the pricing factor matrix A
(k)
u to each

band fk, referred to as “Sept Opt With Pricing”. The second

one is obtained by dividing the power and rate demand evenly

over all channels then applying the approach derived under

full-duplex assumption in [16] while setting the rate demand

on one direction to zero, referred to as “Sept Opt FD”. During

the simulations, we observed that the probability that algorithm

“Sept Opt FD” does not converge is significantly higher than

that of the three others, suggesting its instability. For converged

cases, “Sept Opt FD” requires the most power. This is because,

“Sept Opt FD” was developed with an implicit assumption

of full-duplex MIMO transceivers. Using the proposed pricing

policy (“Joint Opt With Pricing”), the total network power

can be reduced by 25%, compared with algorithm “Joint Opt
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Without Pricing” (pricing not used). Comparing the required

power under “Joint Opt With Pricing” and “Sept Opt With

Pricing” shows the superior power efficiency of joint optimizing

power and spectrum allocation. Both games (with and without

pricing) converge to their NEs after about 8 iterations.

Fig. 2. Total network power consumption vs. iterations.

Fig. 4. Total network power consumption vs. number of links.

Fig. 4 compares the required power under game (7) (without

pricing) and game (23) (with pricing) vs. N . When N increases,

pricing helps to conserve more power. This is because as

interference becomes more severe, the pricing policy is more

helpful to control transmitters’ radiation beams. This fact is

further demonstrated in Fig. 3, which depicts two snapshots of

the network topology and radiation patterns (on a representative

channel) with and without pricing. Visually, compared with

the case when pricing is not used, transmitters using the pro-

posed pricing policy cause less interference to their unintended

receivers by steering their beams away from these receivers

(highlighted in ovals).

Fig. 5 shows the averaged number of iterations before

reaching the NE under both synchronous (Jacobi and Gauss-

Seidel) and asynchronous updating methods. For asynchronous

updating, we allow odd-numbered links skip their updates every

other iteration and even-numbered links skip their updates once

every 3 iterations. As we can see, the game still converges

to the NE under asynchronous update although its speed is

slower than synchronous updates. When all players update their

strategies simultaneously (Jacobi), the game converges faster.

The difference in convergence speed of the Jacobi and Gauss-

Seidel updates becomes more significant with the increase in

the number of players.

VII. CONCLUSIONS

In this work, we aimed at improving the energy and spec-

trum efficiency of MIMO dynamic spectrum networks. This

Fig. 5. Convergence speed vs. number of CR links.

was done by jointly optimizing the beamformers, power, and

spectrum allocation for each link to minimize the total transmit

power subject to rate demands. Using game theory, variational

inequalities theory, and recession analysis, we derived sufficient

conditions for the existence and uniqueness of the NE of the

game. By exploiting the strong duality in convex optimization,

we designed a low-complexity distributed algorithm that allows

nodes to optimally determine their radiation patterns and power

allocation. We then proposed pricing policies that use a novel

network interference function. Using this pricing policy, the

game also converges to a unique NE with significantly improved

efficiency.
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