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Abstract—Dynamic spectrum access and MIMO technologies are
among the most promising solutions to address the ever increasing
wireless traffic demand. An integration that successfully embraces
the two is far from trivial due to the dynamics of spectrum
opportunities as well as the requirement to jointly optimize both
spectrum and spatial/antenna dimensions. Our objective in this
paper is to jointly allocate opportunistic channels to various links
such that no channel is allocated to more than one link, and
to simultaneously optimize the MIMO precoding matrices under
the Nash bargaining (NB) framework. We design a low-complexity
distributed scheme that allows links to propose their minimum
rate requirements, negotiate the channel allocation, and configure
their precoding matrices. Simulations confirm the convergence of
the distributed algorithm under timesharing to the globally optimal
solution of the NB-based problem. They also show that the NB-based
algorithm achieves much better fairness than purely maximizing
network throughput.

Index Terms—Nash bargaining, dual decomposition, distributed
algorithm, cognitive radio, MIMO precoding, fairness, rate demands.

I. INTRODUCTION

Dynamic spectrum access (DSA) and multi-input multi-output
(MIMO) communications have been at the forefront of commu-
nications research. Newly emerging systems and standards (e.g.,
4G Advanced-LTE, IEEE 802.16e, IEEE 802.11ac) adopt MIMO
as a core technology. The FCC has opened up TV white bands
for opportunistic use [1]. A timely issue is how to embrace recent
innovations of the two technologies into a single system.

In this work, we design both centralized and distributed al-
gorithms that allow MIMO-capable secondary users, referred to
as cognitive MIMO (CMIMO) nodes, to cooperate/bargain for
the purpose of determining their assigned channels and optimally
designing their Tx/Rx beamformers under the a heterogeneous
spectrum scenario (i.e., the set of available channels varies from
one link to another). We follow a Nash bargaining (NB) approach
[2] and propose an NB scheme for CMIMO systems, referred
to as BF-CMIMO (bargaining framework for CMIMO). NB-
based resource allocation often yields superior performance than
noncooperative ones [3] [4] [5].

Existing NB solutions (e.g., [3] [4] [5] [6] [7] [8]) are often
centralized and require an arbitrator to manage the bargaining
process. The only fully distributed NB design was provided
in [9], but under the assumption of an unlimited number of
available channels that is unrealistic in DSA systems. Moreover,
almost all of the NB schemes in the literature were developed
for single-antenna systems, with the exception of [8] which was
developed for MIMO downlink communications. However, the
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algorithm in [8] is centralized and does not support an exclusive
channel occupancy policy (i.e., a channel is assigned to no more
than one interfering link). The challenge that hinders a fully
distributed algorithm is the combinatorial complexity of the joint
power/channel allocation problem, which includes integer and
real variables. Relaxing the integer variables does not make the
problem convex.

To overcome the aforementioned challenges, we start with a
BF-CMIMO formulation and transform it to an equivalent one
whose relaxed version is convex. The relaxed version of the
transformed problem is two-fold. First, the relaxed variable can be
interpreted as a “timesharing factor” that represents the fraction
of time a channel is allocated to a link. Hence, this relaxed
version is of practical interest when time-synchronization among
links is possible. An arbitrator-assisted (centralized) bargaining
algorithm is then developed for the timesharing scenario. Using
dual decomposition [10], a distributed algorithm for the time-
sharing problem is developed and proved to drive the bargaining
process to the globally optimal solution. Second, the distributed
bargaining algorithm under timesharing gauges the preferences of
different CMIMO links of on a channel (quantified by a “payoff”
vector). Using these preferences, a distributed heuristic algorithm
for the original BF-CMIMO is derived.

Throughout the paper, we use (.)H for the Hermitian matrix
transpose, tr(.) for the trace of a matrix, |.| for the determinant,
and eigmax(.) for the maximum eigenvalue of a matrix. Matrices
and vectors are indicated in boldface.

II. PROBLEM SETUP

A. Network Model
Consider a CMIMO network of N links with M antennas per

node. The set of currently idle channels for link i is denoted
by Si. In general, Si 6= Sj for two links i and j, although
due to their proximity the two links are likely to share sev-
eral idle channels. Without loss of generality, we assume that

ΨK
def
= {1, 2, . . . ,K} =

N
∪
i=1

Si consists of K orthogonal (not
necessarily contiguous) channels with central frequencies f1, f2,
. . ., fK (for simplicity, we use the same notation fk to refer to
the kth channel). Let ΦN

def
= {1, 2, . . . , N} denote the sets of

links and channels. At a given time instant, each link i may
simultaneously communicate over a subset of channels in Si,
denoted by Ai. However, a channel cannot be allocated to more
than one link, i.e., Ai ∩ Aj = ∅,∀i 6= j. This requirement is
called exclusive channel occupancy, which goes in line with the
so-called “protocol model”. Let A = [ai,k] be an N ×K where
ai,k = 1 if channel fk is allocated to link i, otherwise ai,k = 0.
On channel fk, let xi,k be a column vector of M information
symbols, sent from transmitter i to its receiver. Each element of
xi,k is from one data stream. Let T̃i,k ∈ CM×M denote the



precoding matrix of transmitter i on channel fk. Then, the actual
transmit vector is T̃i,kxi,k. For channel fk, the received signal
vector yi,k at the receiver of link i is given by:

yi,k = H
(k)
i,i T̃i,kxi,k + Nk (1)

where H
(k)
i,i is an M ×M channel gain matrix for channel fk on

link i and Nk ∈ CM is an M ×1 complex Gaussian noise vector
with identity covariance matrix I, representing the floor noise
plus normalized (and whitened) interference from PUs on channel
k. Each element of H

(k)
i,i is the multiplication of a distance-

and channel-dependent attenuation term, and a random term that
reflects multi-path fading (a complex Gaussian variable with zero
mean and unit variance). We assume a flat-fading channel. The
Shannon rate for link i on channel fk is [11]:

Ri,k = log |I + T̃H
i,kH

(k)H
i,i H

(k)
i,i T̃i,k|. (2)

The total channel rate over all channels assigned to link i is Ri =∑
k∈Si

ai,kRi,k. Each link i is subject to a rate demand ci, i.e.,
we require that Ri ≥ ci. Let P (i)

s,k denote the allocated power on
channel k and antenna s of link i. For link i, the total power
allocated on all channels and all antennas should not exceed a
maximum power budget Pmax:∑

k∈Si

M∑
s=1

P
(i)
s,k =

∑
k∈Si

tr(T̃H
i,kT̃i,k) ≤ Pmax. (3)

PU protection is provided in the form of database-authorized
access and frequency-dependent power masks on secondary trans-
missions. In its recent specifications [1], the FCC has imposed
power masks on opportunistic transmissions even over idle chan-
nels, if such channels are adjacent to PU-active channels. Let
P∗mask

def
= (P ∗mask(f1), P ∗mask(f2), . . . , P ∗mask(fK)) denote the

vector of power masks. We require:
M∑
s=1

P
(i)
s,k = tr(T̃H

i,kT̃i,k) ≤ P ∗mask(fk),∀i and ∀k. (4)

To accommodate spectrum heterogeneity, we force link i not to
transmit on channels that are not available for its use by imposing
a link-dependent power-mask vector as in [12] P∗mask(i). For link
i, P∗mask(i)

def
= (P ∗mask(i, f1), P ∗mask(i, f2), . . . , P ∗mask(i, fK)),

where P ∗mask(i, fk) = 0 if fk /∈ Si, and P ∗mask(i, fk) =
P ∗mask(fk) otherwise. Note that P∗mask(i) differs from one link
to another.

B. Problem Formulation
We propose a Nash bargaining framework for CMIMO net-

works, called BF-CMIMO. In this framework, nodes first an-
nounce their rate demands and then jointly select their channels
and optimize their precoders in a distributed manner. Nash [2]
proposed axioms that define a Nash bargaining solution (NBS).
An NBS guarantees all users’ demands and is Pareto optimal,
meaning that there is no other solution that leads to better payoffs
for two or more players simultaneously.

Theorem 1: [2] If the utility space U is upper-bounded,
closed, and convex, then there exists a unique NBS, which is
obtained by solving the following problem:

max
{b∈B}

N∏
i=1

(ui − u0
i ). (5)

where b and B are action set and action space of all players. ui
and u0

i are the achieved utility (e.g., throughput) and the utility
demand of player/link i. The utility space U is the set of all
possible payoff allocations. Even if U is not convex, the NBS may
still exist. Though a convex utility space makes the bargaining
process more tractable, cases with nonconvex utility spaces (e.g.,
the one in this paper) are common.

In the CMIMO setup, each transmitting node is a player. The
action of player i is (Ai, T̃i) where T̃i

def
= {T̃i,k, k ∈ Ai} is

the set of precoding matrices for the set of channels allocated to
i. We aim at finding a channel allocation matrix A and sets of
precoders for all CR transmitters (T̃i,∀i ∈ ΦN ) that solve the
following problem:

maximize
{ai,k,T̃i,k,∀k∈Si,∀i∈ΦN}

∑
i∈ΦN

log(
∑
k∈Si

ai,kRi,k − ci)

s.t. C1:
∑

k∈ΨK

tr(T̃H
i,kT̃i,k) ≤ Pmax,∀i ∈ ΦN

C2:tr(T̃H
i,kT̃i,k) ≤ P ∗mask(i, fk),∀k ∈ ΨK ,∀i ∈ ΦN

C3:
∑

k∈ΨK

ai,kRi,k ≥ ci,∀i ∈ ΦN

C4:
∑
i∈ΦN

ai,k ≤ 1,∀k ∈ ΨK

C5:ai,k = {0, 1},∀k ∈ ΨK ,∀i ∈ ΦN

(6)

where the objective function is mapped to that of the NBS in (5).
Because each channel can be assigned to one link only, the

best strategy for the transmitter and receiver of a given MIMO
link is to design their beamformers so that their M data streams
do not interfere with each other [11]. These beamformers can be
derived from the CSI matrix using singular-value decomposition:

H
(k)
i,i = Ui,kGi,kT

H
i,k (7)

where Ui,k and Ti,k are unitary matrices, and Gi,k is a diagonal
matrix formed from the singular values g(i)

s,k, s = 1, . . . ,M , of
the channel gain matrix H

(k)
i,i . At the transmitter, we set T̃i,k

to Ti,kP
(i)
k

1/2
[11], where P

(i)
k is a diagonal matrix whose sth

diagonal element is P (i)
s,k. The achievable rate over channel fk is

Ri,k =
M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k). We can rewrite (6) as follows:

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

log(
∑

k∈ΨK

ai,k
M∑
s=1

log(1+g
(i)
s,kP

(i)
s,k)−ci)

s.t. C1’:
∑

k∈ΨK

M∑
s=1

P
(i)
s,k ≤ Pmax,∀i ∈ ΦN

C2’:
M∑
s=1

P
(i)
s,k ≤ P ∗mask(i, fk),∀k ∈ ΨK ,∀i ∈ ΦN

C3’:
∑

k∈ΨK

ai,k
M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k) ≥ ci,∀i ∈ ΦN

C4’:
∑
i∈ΦN

ai,k ≤ 1,∀k ∈ ΨK

C5’:ai,k = {0, 1},∀k ∈ ΨK ,∀i ∈ ΦN .

(8)

III. DISTRIBUTED BARGAINING ALGORITHM

A. Convexification and Timesharing Interpretation

Problem (8) is NP-hard [13]. If we relax the binary constraint
C5’, its relaxed version is not convex as the objective function
is not concave w.r.t. (ai,k, P

(i)
s,k). To address (8) and provide a

distributed algorithm, lets consider the following function:
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f(ai,k, P
(i)
s,k)

def
=

ai,k
M∑
s=1

log(1+
g
(i)
s,kP

(i)
s,k

ai,k
) if 0 < ai,k ≤ 1

0 if ai,k = 0.
(9)

It is easy to verify that the bargaining problem (8) is equivalent
to:

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

log(
∑
k∈Si

f(ai,k, P
(i)
s,k)− ci)

s.t. C1’, C2’, C3’, C4’, C5’ in (8).
(10)

A relaxed version of (10) can be written as:

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

log(
∑

k∈ΨK

f(ai,k, P
(i)
s,k)− ci)

s.t. C1’, C2’, C3’, C4’ in (8)
0 ≤ ai,k ≤ 1, ∀k ∈ ΨK ,∀i ∈ ΦN .

(11)

The advantage of (10) over (8) is that its relaxed version (11)
is convex w.r.t. (ai,k, P

(i)
s,k).

Theorem 2: Problem (11) is a convex optimization problem.
Proof: See Appendix A in [14]. �

Problem (11) itself is practically useful if transmissions are
time-synchronized. The relaxed variable ai,k can be interpreted
as the fraction of time that link i is allowed to use channel fk
[15]. Under the timesharing assumption, the convex problem (11)
complies with Theorem 1, hence a unique and Pareto-optimal
NBS is the solution of (11).

Theorem 3: If timesharing is allowed, then a unique NBS
exists and is the solution to problem (11).

B. Distributed Optimal Algorithm using Dual Decomposition
The bargaining formulation (11) under timesharing is convex

and its Slater’s conditions hold [16]. Hence, strong duality holds,
meaning that the solution of its dual problem also solves the
primal problem (11). The Lagrangian of (11) is given in (12),
where αi,k, γi, βi, and ρk are nonnegative Lagrangian multipliers,
interpreted as prices for violating the constraints. The dual
problem of (11) is:

DP : minimize
{αi,k,γi,βi,ρk,∀k∈Si,∀i∈ΨN}

D(αi,k, γi, βi, ρk) (16)

where D is the dual function, defined as:

D= max
{ai,k,P (i)

s,k,∀k∈Si,∀i∈ΨN}
L(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk). (17)

To facilitate a distributed solution, we decompose the La-
grangian of the primal problem in (13) with:

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk)

= log(
∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci)

+
∑
k∈ΨK

αi,k(−
M∑
s=1

P
(i)
s,k+P ∗mask(i, fk))+γi(−

∑
k∈ΨK

M∑
s=1

P
(i)
s,k+Pmax)

+βi(
∑
k∈ΨK

ai,k

M∑
s=1

log(1+
g

(i)
s,kP

(i)
s,k

ai,k
)−ci)−

∑
k∈ΨK

ρkai,k.

(18)

To solve (17) for the dual function, each link individu-
ally maximizes Li(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk) to find the optimal

(a∗i,k, P
(i)∗
s,k ) for given prices (αi,k, γi, βi, ρk):

maximize
{ai,k≥0,P

(i)
s,k≥0,∀k∈ΨK}

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk). (19)

The local problem (19) is convex, and hence can be solved using
standard methods like “interior fixed point”. If a central arbitrator
is in place (e.g., a base station or spectrum database/broker), after
solving the local problem (19), all links report their calculated
(a∗i,k, P

(i)∗
s,k ) to the arbitrator so that the dual function is updated

as L(a∗i,k, P
(i)∗
s,k , αi,k, γi, βi, ρk).

Because the dual problem DP (16) is convex [10], the arbitrator
can solve it efficiently for (αi,k, γi, βi, ρk), and then broadcasts
these variables. Each link updates its local problem (19) with
broadcasted Lagrangian variables. This process is illustrated in
Fig. 1 and referred to as “Arbitrator-Assisted Scheme”.

Fig. 1. Arbitrator-assisted and distributed bargaining schemes.

Next, we design a fully distributed and optimal algorithm for
problem (11) (i.e., no central controler/arbitrator is available).
Since the dual problem is convex and its objective function is
differentiable, DP can be solved with a gradient search algorithm.
The DP’s variables at time (t+ 1) are updated as follows:

α
(t+1)
i,k =

[
α

(t)
i,k−η

∂L

∂αi,k

]+

=

[
α

(t)
i,k−η(−

M∑
s=1

P
(i)(t)∗
s,k +P ∗mask(i, fk))

]+

γi
(t+1)=

[
γi

(t)−η ∂L
∂γi

]+

=

[
γi

(t)−η(−
∑
k∈ΨK

M∑
s=1

P
(i)(t)∗
s,k +Pmax)

]+

βi
(t+1)=

[
βi

(t) − η ∂L
∂βi

]+

=

[
βi

(t)−η(
∑
k∈ΨK

a
(t)∗
i,k

M∑
s=1

log(1+
g

(i)
s,kP

(i)(t)∗
s,k

a
(t)∗
i,k

)−ci)

]+

ρk
(t+1)=

[
ρk

(t) − η ∂L
∂ρk

]+

=

[
ρk

(t)−η(−
∑
i∈ΦN

a
(t)∗
i,k +1)

]+

(20)

where η > 0 is a sufficiently small step size and [.]+ denotes the
projection onto the nonnegative orthant.

Observe that the Lagrangian variables αi,k, γi, and βi can be
calculated and updated using only local information of link i (the
fraction of time ai,k that link i wishes to communicate on channel
fk and the power allocated to stream s on channel fk, P (i)

s,k).
Moreover, the price ρk is obtained if other links j broadcast their
timeshare aj,k on channel fk. Our fully distributed mechanism
is shown in Algorithm 1 and illustrated in Fig. 1. The key idea
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L(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) =

∑
i∈ΦN

log(
∑
k∈Si

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci) +

∑
i∈ΦN

∑
k∈ΨK

αi,k[−
M∑
s=1

P
(i)
s,k + Pmask(i, fk)]

+
∑
i∈ΦN

γi[−
∑
k∈ΨK

M∑
s=1

P
(i)
s,k + Pmax] +

∑
i∈ΦN

βi[
∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci] +

∑
k∈ΨK

ρk(−
∑
i∈ΦN

ai,k + 1)

(12)

=
∑
i∈ΦN

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) +

∑
k∈ΨK

ρk (13)

∂L

∂P
(i)
s,k

=
g

(i)
s,k( ∑

k∈ΨK

ai,k

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)− ci

)
(1 +

g
(i)
s,kP

(i)
s,k

ai,k
)

− αi,k − γi + βi
g

(i)
s,k

(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

{
= 0 if Ps,k > 0

< 0 if P (i)
s,k = 0 (14)

∂L

∂ai,k
=

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)−ai,k

g
(i)
s,k

P
(i)
s,k

a2
i,k

(1+
g
(i)
s,k

P
(i)
s,k

a
i,k

)


( ∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)− ci

) +βi

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)−ai,k

g
(i)
s,kP

(i)
s,k

a2i,k

(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

−ρk
= 0 if 0 < ai,k < 0
> 0 if ai,k = 1
< 0 if ai,k = 0

(15)

in Algorithm 1, inline with the Network Utility Maximization
(NUM) problem in [17], is to ignore the iterations of updates
in (20), which would have been carried out by an arbitrator.
However, we prove that this simplification does not affect the
convergence and optimality of Algorithm 1.

Algorithm 1 Distributed Bargaining Algorithm for Computing
Optimal Timeshares and Precoders of Link i at Time (t+ 1):

1: Input: a=(a
(t+1)
1,k , ..., a

(t+1)
i−1,k, a

(t)
i+1,k, ..., a

(t)
N,k), ∀k ∈ ΨK

If t+ 1 = 0 (beginning iteration), set a = (1/N, . . . , 1/N)

2: Initialize: T̃
(t+1)
i ← T̃

(t)
i

3: Computation:
4: ∀k ∈ ΨK , compute transmit and receive beamformers (Ti,k,

UH
i,k), and stream gains g(i)s,k using (7).

5: Update local Lagrangian variables α(t+1)
i,k , γi(t+1), and βi(t+1)

using (20).
6: Update price k, ρ(t+1)

k using (20) and timeshares a(t)∗j,k from
links j, j 6= i.

7: Update Li(ai,k, P
(i)
s,k, α

(t+1)
i,k , γi

(t+1), βi
(t+1), ρ

(t+1)
k ) (18).

8: Solve problem (19) for (a
(t+1)∗
i,k , P

(i)(t+1)∗
s,k ).

9: Broadcast: tentative timeshares a(t+1)∗
i,k , ∀k ∈ ΨK .

10: RETURN T̃
(t+1)
i,k = Ti,k(P

(i)(t+1)∗
k )1/2, ∀k ∈ ΨK

Theorem 4: For a sufficiently small step size η > 0, Algo-
rithm 1 converges to the globally optimal solution (Pareto-optimal
NBS) of problem (11).
Proof: See Appendix B in [14]. �

It is worth noting that besides its optimality and distributed
implementation, Algorithm 1 greatly reduces the computational
time for large networks. Instead of dealing with N(MK + K)
variables in the centralized problem (11), Algorithm 1 involves
MK +K variables.

C. Distributed Bargaining Algorithm

The optimal solution of the relaxed problem tells which links
wish to access which channels and for how long. In other words,
the preferences of different links over the pool of available
channels are revealed. In this section, we exclusively assign a

channel to a link by considering preferences of all other links on
that channel.

The gradients at the convergence point of Algorithm 1 must
be zero if the globally optimal solution to (11) is an interior
point of the feasible region. If the solution is a boundary point,
the gradient at this point must be positive (negative) along the
outward (inward) direction of the interior of the feasible region
[16]. This fact is conveyed in (14) and (15) (the timeshare ai,k =

0 iff P (i)
s,k = 0,∀s = {1, . . . ,M}).

Let ∆i be the amount by which the allocated rate for link i
(under timesharing) exceeds its demand ci:

∆i
def
=
∑
k∈Si

(
ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)

)
− ci (21)

When P (i)
s,k > 0, (14) implies:

1

g
(i)
s,k

(
αi,k+γi

)
(1+

g
(i)
s,kP

(i)
s,k

ai,k
) =

1

∆i
+βi,∀s = 1, . . . ,M. (22)

Plugging 1/∆i from (22) into (15) and after some manipula-
tions, we get:

∂L

∂ai,k
=

{
Fi,k − ρk if ai,k > 0
−ρk if ai,k = 0

(23)

where

Fi,k
def
=

(
1

∆i
+βi

)M∑
s=1

log

(
1+

g
(i)
s,kP

(i)
s,k

ai,k

)
−
αk,i+γi

ai,k

M∑
s=1

P
(i)
s,k.

(24)

Recalling (15), (23) suggests that at the optimal solution, link
i should exclusively occupy channel fk if Fi,k > ρk; otherwise,
link i should timeshare the channel with other links or not use it.
ρk is interpreted as the price of using fk, which is “flat” for all
buyers/links. Fi,k can be interpreted as the “payoff” that link i
gets from “investing” on channel k. If channel fk is exclusively
allocated to one link, this link must have the highest Fi,k. This
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means the most efficient/needy user (of channel k) wins the
channel. Formally, the following rule selects the optimal link for
fk:

ai′,k =

{
1 if i′ = arg max

∀i∈ΦN

Fi,k

0 otherwise
(25)

To execute the above rule in a distributed manner, each link
i broadcasts a vector Fi

def
= {Fi,1, . . . , Fi,K}. After receiving Fj

from its neighbors, link i can autonomously determine the set of
channels Ai it should select (when comparing Fi,k of different
links, if a tie happens, we randomly pick any of the links). Note
that we assume secondary users are truthful and cooperative when
broadcasting their “payoffs”. Dealing with untruthful users is out
of the scope of this work.

Economical Interpretation: Consider Fi,k in (24). The first
term is the weighted rate that link i can achieve from channel
k. The second term is the weighted power that link i invests
on channel k. Hence, the “payoff” Fi,k is indeed the weighted
rate that link i gets from channel k discounted by its allocated
(weighted) power. For the same weighted power and the same
scalar ( 1

∆i
+ βi), the higher the channel gain g

(i)
s,k of link i on

channel k, the more likely that link i will win the channel.
However, if two links have identical gains on channel k and the
same weighted power, then the link with a smaller ∆i (compared
with its demand) is likely to win the channel. This fact ensures
fair resource allocation.

After knowing its set of allocated channels Ai, it is necessary
for link i to re-solve the power allocation problem to ensure
optimality and QoS satisfaction, as follows:

maximize
{P (i)

s,k≥0,∀s=1,...,M,∀k∈Ai}

∑
k∈Ai

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)

s.t.
∑
k∈Ai

M∑
s=1

P
(i)
s,k ≤ Pmax

M∑
s=1

P
(i)
s,k ≤ P ∗mask(i, fk), ∀k ∈ Ai.

(26)

Problem (26) is convex and hence can be solved efficiently using
standard methods. In fact, (26) belongs to the class of generalized
water filling problems with multiple water levels (one at each
channel), which can be solved efficiently with the algorithms in
[18].

If the optimum solution to (26) does not meet the rate demand
ci, link i needs to inform others through a Reallocation Request
message (RRM) and increases its bargain to compete for addi-
tional channels, i.e., raise its “payoff” vector Fi in (24). Since βi
is the price of violating the minimum rate constraint C3’ in (8),
it is intuitive to raise βi by a sufficiently small step-size δ so that
i wins only one additional channel at a time. δ and channel l that
link i wants to acquire are found by Algorithm 2.

The idea of Algorithm 2 is to first find the vector of winning
“payoffs” (Fmax) for all channels, and then see how far the
“payoff” vector Fi of link i is from these values (vector Θi).
Recalling (24), if link i wants to win channel k that is currently
not allocated for i, then δ must be set to be strictly greater than
Θi,k

Υi,k
. However, link i wants to request only one channel at a time.

For that, we sort the elements of Θi in an ascending order, then
set δ to be the average of the two smallest positive elements of
Θi.

Using its updated price, βi = βi + δ, link i recalculates
the “payoff” vector Fi. Consequently, it broadcasts a RRM,

Algorithm 2 Find increment δ for the price of violating link i’s
rate demand (problem (6)) and channel l that i is about to acquire:

1: Input: Fi, ∀i ∈ ΦN

2: Output: δ and l

3: Υi,k
def
=

M∑
s=1

log(1+
g
(i)
s,k

P
(i)
s,k

ai,k
)

Fmax
def
= {Fmax(1), . . . , Fmax(K)} where Fmax(k) =

max{Fi,k}, ∀i ∈ ΦN .
Θi

def
= {Θi,1, . . . ,Θi,K} with Θi,k = Fmax(k)− Fi,k.

4: Sort Zi
def
= Sort(Θi) in ascending order.

5: Let Zi(m) is the smallest positive element in Zi.
Set: δ = (Zi(m)+Zi(m+1))

2
.

Channel that link i is going to acquire is the index of Zi(m)
in Θi before sorting.

6: RETURN: δ and channel index l.

containing channel l and the updated Fi. Upon hearing the
message, all links record the new Fi. Then, the current “owner”
(link j) of channel l excludes l from its set of allocated channels
Aj (since link i is now more “competitive”). Both links i and
j re-solve the power allocation problem (26) and check if their
demands are met. The process of increasing the bidding price to
bargain for additional channels continues until all links get their
requested rates.

We assume that there is enough spectrum in the network to
meet the minimum demands of all links (necessary condition to
apply NBS [2]), so that problem (6) is feasible. This can be easily
realized through an admission/congestion control mechanism.
Hence, the bargaining process eventually stops. If no RRM is
heard for a given time duration (set as Timer), all links start
transmitting on their selected channels. The channel and power
allocation for problem (6) is summarized in Algorithm 3.

Algorithm 3 Distributed Bargaining Algorithm to Design Pre-
coders and Allocate Channels for Node i at Time (t+ 1):

1: Execute Algorithm 1 (until convergence)
2: Payoff vector computation Fi (using (24))
3: Enter channel allocation phase:

Link i broadcasts its payoff vector Fi. Then, sets Timer
4: while T imer not expired do
5: Upon receiving Fj from neighbors, update the set of

allocated channels Ai using (25).
6: Execute the power allocation (26) and check if Ri ≥ ci
7: if Ri < ci then
8: Compute δ and the channel index l
9: Set βi = βi + δ and update Fi using (24) to acquire

(additional) channel l
10: Broadcast the new Fi, RRM and reset Timer
11: end if
12: If a RRM is heard, reset Timer
13: end while
14: RETURN T̃

(t+1)
i,k = Ti,k(P

(i)(t+1)∗
k )1/2, ∀k ∈ Ai

IV. NUMERICAL RESULTS

We simulate a CMIMO network in which each node is
equipped with 4 antennas. The total number of channels is 20,
each with bandwidth of 16 MHz. The number of links is varied
from 3 to 10. We set Pmax = 1 W and P ∗mask(fk) = 0.5 W
∀fk. Noise floor plus PUs interference is −100 dBm/Hz. Without
loss of generality, we set the rate demands of each link to 2
bits/s/Hz. Simulation results are averaged over 10 runs. In each
run, CMIMO nodes are randomly distributed on a square field of
length 100 m. Channels are assumed to be stationary during each
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simulation experiment, with a free-space attenuation factor of 2.
The spreading angles of arrival signals vary from −π/5 to π/5.
Following a similar approach to Algorithms 1 and 3, we develop
algorithms to maximize the CMIMO network throughput, called
NET-MAX (see Section V in [14]), which serves as a performance
benchmark (in terms of throughput).

Fig. 2. Convergence of the distributed algorithm under timesharing (TS) for
BF-CMIMO.

To evaluate the optimality and convergence of Algorithm 1
under timesharing (TS), we consider a network of 10 links.
Spectrum heterogeneity is captured by making channels ith, i+1,
i+2 are not available for link i. Figure 2 depicts the dual function
(17) vs. iterations. Algorithm 1 of TS BF-CMIMO converges to
the optimal centralized solution after 5 iterations. Under exclusive
channel allocation (no TS), we observed that Algorithm 3 for BF-
CMIMO often needs less than 3 additional iterations to reallocate
channels (figure not shown for brevity).

Fig. 3. Distributed BF-CMIMO and NET-MAX algorithms vs. optimal solutions
(via exhaustive search).

To compare the performance of the heuristic algorithm BF-
CMIMO with its optimal solution under the exclusive channel
occupancy policy, we run an exhaustive search on a small network
of 3 links and 10 channels. Figure 3 shows that the value of the
objective of BF-CMIMO under Algorithm 3 is 9.8, compared
with the optimal value of 10.74. This suggests that Algorithm
3 achieves 93% of the optimal solution. This also shows that
the throughput of the distributed BF-CMIMO algorithm (105.01
bits/s/Hz) is about 9% less than that of the optimal NET-MAX
solution (119.84 bits/s/Hz).

Figure 4 shows Jain’s fairness index of the Algorithms 1 and
3 of BF-CMIMO and the corresponding algorithms for NET-
MAX. Algorithms that rely on NB (with or without TS) achieve
significantly better fairness than those of NET-MAX. As the
number of links increases, the fairness index under NET-MAX
(with or without TS) decreases. However, BF-CMIMO algorithms
maintain quite stable fairness for different network sizes. This
is because under BF-CMIMO, channels (or their timeshares)
are allocated while accounting for the amount of extra rate ∆i.
Jain’s index for the distributed algorithm under BF-CMIMO with

Fig. 4. Jain’s fairness index under BF-CMIMO and NET-MAX, with and without
TS.

exclusive channel allocation is about 19% less than that under
TS.

V. CONCLUSIONS

In this paper, we developed fully distributed algorithms to
jointly allocate channels (under the exclusive channel occupancy),
and optimize power allocation and antenna patterns (through
precoding matrices) for cognitive MIMO networks. The proposed
algorithms allow cognitive MIMO links to propose their rate de-
mands, cooperate and bargain to get their channel assignment, and
optimize their precoders under the Nash Bargaining framework.
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