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ABSTRACT
In a multi-hop wireless ad hoc network, packet losses are at-
tributed to harsh channel conditions and intentional packet
discard by malicious nodes. In this paper, while observing
a sequence of packet losses, we are interested in determin-
ing whether losses are due to link errors only, or due to the
combined effect of link errors and malicious drop. We are es-
pecially interested in insider’s attacks, whereby a malicious
node that is part of the route exploits its knowledge of the
communication context to selectively drop a small number
of packets that are critical to network performance. Because
the packet dropping rate in this case is comparable to the
channel error rate, conventional algorithms that are based
on detecting the packet loss rate cannot achieve satisfac-
tory detection accuracy. To improve the detection accuracy,
we propose to exploit the correlations between lost pack-
ets. Furthermore, to ensure truthful calculation of these
correlations, we develop a homomorphic linear authentica-
tor (HLA) based public auditing architecture that allows
the detector to verify the truthfulness of the packet loss in-
formation reported by nodes. This architecture is privacy
preserving, collusion proof, and incurs low communication
and storage overheads. Through extensive simulations, we
verify that the proposed mechanism achieves significantly
better detection accuracy than conventional methods such
as a maximum-likelihood based detection.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection (e.g., firewalls)

General Terms
Security, reliability, algorithms, design

Keywords
Denial-of-service, malicious user detection, homomorphic lin-
ear authentication, wireless ad hoc networks, security
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1. INTRODUCTION

1.1 Motivation
In a multi-hop wireless network, nodes cooperate in relay-

ing/routing traffic. An adversary can exploit this cooper-
ative nature to launch denial-of-service (DoS) attacks. For
example, the adversary may first pretend to be a cooperative
node in the route discovery process. Once being included in
a route, the adversary may start maliciously dropping pack-
ets. In the most straightforward form of this attack, the ma-
licious node simply stops forwarding packets received from
upstream nodes, completely disrupting the traffic delivery
between the source and the destination. Eventually, such
severe DoS attacks can paralyze the network by partition-
ing its topology.

Even though persistent packet dropping can effectively de-
grade the performance of the network, from the attacker’s
standpoint performing such an “always-on” attack has its
disadvantages in terms of the ease of detection [22]. A ma-
licious node that is part of the route can actually exploit its
knowledge of the network protocols and the communication
context to launch an insider’s attack, aiming at achieving
the same attack effect but at a much lower risk of being
detected. Specifically, the malicious node can identify the
importance of various packets and drop a small number of
packets that are deemed highly critical to the performance
of the network. These important packets are typically con-
trol packets. For example, in a frequency-hopping network,
these packets may convey frequency hopping sequences; in
an ad hoc cognitive radio network, they could be the packets
that carry the idle channel lists (i.e., white spaces) that are
used to establish a network-wide control channel. By tar-
geting these critical packets, the authors in [18, 21, 22] have
shown that a non-persistent insider’s attack can cause sig-
nificant damage to the network performance. In this paper,
we are interested in combating such an insider’s attack. In
particular, we are interested in the problem of detecting the
events of selective packet drops and identifying the malicious
node(s) responsible for these drops.

Detecting malicious selective packet dropping is extremely
challenging in a highly dynamic wireless environment. The
difficulty stems from the requirement that we need to not
only detect the location (or hop) where the packet drop took
place, but also identify whether the drop is intentional or
not. Specifically, because of the open nature of the wireless
medium, the quality of the channel typically fluctuates due
to fading, shadowing, interference, and background noise.
As a result, a packet drop in the route could be caused by
harsh channel conditions (a.k.a., link errors) or by malicious



behavior. In some cases, e.g., a highly mobile environment,
link errors are quite significant. So, a malicious node can
camouflage its attack under the background of harsh channel
conditions by selectively dropping a small number of highly
important packets. In this case, observing the packet loss
rate is not enough to accurately identify the exact cause of
a packet loss, because the packet drop rate by the malicious
node is comparable to that of wireless link errors. Clearly,
deciding whether a packet drop is intentional or uninten-
tional in such an ambiguous setup is a challenging problem.

The above problem has not been well addressed in the lit-
erature. As discussed in Section 2, most of the related works
preclude the ambiguity of the environment by assuming that
malicious dropping is the only source of packet loss, so that
there is no need to account for the impact of link errors. On
the other hand, for the small number of works that differen-
tiate between link errors and malicious packet drops, their
detection algorithms usually require the number of dropped
packets by the attacker to be significantly higher than link
errors, in order to provide an acceptable detection accuracy.

1.2 Main Contribution and Paper Organiza-
tion

In this paper, we develop an accurate algorithm for detect-
ing selective packet drops made by insider malicious nodes.
Our algorithm also provides a truthful and publicly verifi-
able decision statistics as a proof to support the detection
decision. The high detection accuracy is achieved by exploit-
ing the correlations between the positions of lost packets, as
calculated from the packet-loss bitmap (a bitmap describing
the lost/received status of each packet in a sequence of con-
secutive packet transmissions). The basic idea behind this
method is that even though malicious dropping may result
in a packet loss rate that is comparable to normal chan-
nel losses, the stochastic processes that characterize the two
phenomena exhibit different correlation structures (equiva-
lently, different patterns of packet losses). Therefore, by de-
tecting the correlations between lost packets, one can decide
whether the packet loss is purely due to regular link errors,
or is a combined effect of link error and malicious drop. Our
algorithm takes into account the cross-statistics between lost
packets to make a more informative decision, and thus is in
sharp contrast to the conventional methods that rely only
on the distribution of the number of lost packets.

The main challenge in realizing our mechanism lies in how
to guarantee that the packet-loss bitmaps reported by indi-
vidual nodes along the route are truthful, i.e., reflect the
actual status of each packet transmission. Such truthful-
ness is essential for correct calculation of the correlation be-
tween lost packets. This challenge is not trivial, because it
is natural for an attacker to report false information to the
detection algorithm to avoid being detected. For example,
the malicious node may understate its packet-loss bitmap,
i.e., some packets may have been dropped by the node but
the node reports that these packets have been forwarded.
Therefore, some auditing mechanism is needed to verify the
truthfulness of the reported information. Considering that
a typical wireless device is resource-constrained, we also re-
quire that a user should be able to delegate the burden of
auditing and detection to some public server to save its own
resources.

Our solution to the above public-auditing problem is con-
structed based on the homomorphic linear authenticator (HLA)
cryptographic primitive [2][3][24], which is basically a signa-
ture scheme widely used in cloud computing and storage

server systems to provide a proof of storage from the server
to entrusting clients [25]. However, direct application of
HLA does not solve our problem well, mainly because in our
problem setup, there can be more than one malicious node
along the route. These nodes may collude (by exchanging
information) during the attack and when being asked to sub-
mit their reports. For example, a packet and its associated
HLA signature may be dropped at an upstream malicious
node, so a downstream malicious node does not receive this
packet and the HLA signature from the route. However, this
downstream attacker can still open a back-channel to request
this information from the upstream malicious node. When
being audited, the downstream malicious node can still pro-
vide valid proof for the reception of the packet. So packet
dropping at the upstream malicious node is not detected.
Such collusion is unique to our problem, because in the cloud
computing/storage server scenario, a file is uniquely stored
at a single server, so there are no other parties for the server
to collude with. We show that our new HLA construction is
collusion-proof.

Our construction also provides the following new features.
First, privacy-preserving: the public auditor should not be
able to decern the content of a packet delivered along the
route through the auditing information submitted by indi-
vidual hops, no matter how many independent reports of
the auditing information are submitted to the auditor. Sec-
ond, our construction incurs low communication and storage
overheads at intermediate nodes. This makes our mecha-
nism applicable to a wide range of wireless devices, including
low-cost wireless sensors that have very limited bandwidth
and memory capacities. This is also in sharp contrast to the
typical storage-server scenario, where bandwidth/storage is
not considered an issue.

The remainder of this paper is organized as follows. In
Section 2 we review the related work. The system/adversary
models and problem statement are described in Section 3.
We present the proposed scheme and analyze its security
performance and overheads in Section 4. Simulation results
are presented in Section 5, and we conclude the paper in
Section 6.

2. RELATED WORK
Depending on how much weight a detection algorithm

gives to link errors relative to malicious packet drops, the
related work can be classified into the following two cate-
gories.

The first category aims at high malicious dropping rates,
where most (or all) lost packets are caused by malicious
dropping. In this case, the impact of link errors is ignored.
Most related work falls into this category. Based on the
methodology used to identify the attacking nodes, these
works can be further classified into four sub-categories. The
first sub-category is based on credit systems [7][27]. A credit
system provides an incentive for cooperation. A node re-
ceives credit by relaying packets for others, and uses its
credit to send its own packets. As a result, a maliciously
node that continuous to drop packets will eventually de-
plete its credit, and will not be able to send its own traf-
fic. The second sub-category is based on reputation sys-
tems [9][6][11][16][17][8][4]. A reputation system relies on
neighbors to monitor and identify misbehaving nodes. A
node with a high packet dropping rate is given a bad repu-
tation by its neighbors. This reputation information is prop-
agated periodically throughout the network and is used as
an important metric in selecting routes. Consequently, a



malicious node will be excluded from any route. The third
sub-category of works relies on end-to-end or hop-to-hop ac-
knowledgements to directly locate the hops where packets
are lost [15][19][20]. A hop of high packet loss rate will be
excluded from the route. The fourth sub-category addresses
the problem using cryptographic methods. For example,
the work in [14] utilizes Bloom filters to construct proofs
for the number of packets that are forwarded at each node.
By examining the number of relayed packets at successive
hops along a route, one can identify suspicious hops that
exhibit high packet loss rates. Similarly, the method in [13]
traces the forwarding records of a particular packet at each
intermediate node by formulating the tracing problem as a
Renyi-Ulam game. The first hop where the packet is no
longer forwarded is considered a suspect for misbehaving.

The second category targets the scenario where the num-
ber of maliciously dropped packets is significantly higher
than that caused by link errors, but the impact of link errors
is non-negligible. Certain knowledge of the wireless channel
is necessary in this case. The authors in [23] proposed to
shape the traffic at the MAC layer of the source node ac-
cording to a certain statistical distribution, so that interme-
diate nodes are able to estimate the rate of received traffic by
sampling the packet arrival times. By comparing the source
traffic rate with the estimated received rate, the detection
algorithm decides whether the discrepancy in rates, if any,
is within a reasonable range such that the difference can be
considered as being caused by normal channel impairments
only, or caused by malicious dropping, otherwise. The works
in [10] and [26] proposed to detect malicious packet dropping
by counting the number of lost packets. If the number of lost
packets is significantly larger than the expected packet loss
rate made by link errors, then with high probability a mali-
cious node is contributing to packet losses.

All methods mentioned above do not perform well when
malicious packet dropping is highly selective. More specifi-
cally, for the credit-system-based method, a malicious node
may still receive enough credits by forwarding most of the
packets it receives from upstream nodes. Similarly, in the
reputation-based approach, the malicious node can main-
tain a reasonably good reputation by forwarding most of the
packets to the next hop. As for the acknowledgement-based
method, the Bloom-filter scheme, and all the mechanisms
in the second category, merely counting the number of lost
packets does not give a sufficient ground to detect the real
culprit that is causing packet losses. This is because the dif-
ference in the number of lost packets between the link-error-
only case and the link-error-plus-malicious-dropping case is
small when the attacker drops only a few packets. Conse-
quently, the detection accuracy of these algorithms deterio-
rates when malicious drops become highly selective.

Our study targets the challenging situation where link er-
rors and malicious dropping lead to comparable packet loss
rates. The effort in the literature on this problem has been
quite preliminary, and there is a few related works. Note
that the cryptographic methods proposed in [21] to counter
selective packet jamming target a different issue than the de-
tection problem studied in this paper. The methods in [21]
delay a jammer from recognizing the significance of a packet
after the packet has been successfully transmitted, so that
there is no time for the jammer to conduct jamming based
on the content/importance of the packet. Instead of try-
ing to detect any malicious behavior, the approach in [21]
is proactive, and hence incurs overheads regardless of the
presence or absence of attackers.

3. SYSTEM MODELS AND PROBLEM STATE-
MENT

3.1 Network and Channel Models
Consider an arbitrary path PSD in a multi-hop wireless ad

hoc network, as shown in Figure 1. The source node S con-
tinuously sends packets to the destination node D through
intermediate nodes n1, . . . , nK , where ni is the upstream
node of ni+1, for 1 ≤ i ≤ K− 1. We assume that S is aware
of the route PSD, as in Dynamic Source Routing (DSR) [12].
If DSR is not used, S can identify the nodes in PSD by per-
forming a traceroute operation.

 

Figure 1: Network and attack model.

We model the wireless channel of each hop along PSD

as a random process that alternates between good and bad
states. Packets transmitted during the good state are suc-
cessful, and packets transmitted during the bad state are
lost. In contrast to the classical Gilbert-Ellioit (GE) chan-
nel model, here we do not assume any Markovian property
on the channel behavior. We only require that the sequence
of sojourn times for each state follows a stationary distribu-
tion, and the autocorrelation function of the channel state,
say fc(i), where i is a discrete time lag measured in pack-
ets, is also stationary. The function fc(i) can be calculated
using the probing approach in [1]. In brief, a sequence of
M packets are transmitted consecutively over the channel.
By observing whether the transmissions are successful or
not, the receiver obtains a realization of the channel state
(a1, . . . , aM ), where aj ∈ {0, 1} for j = 1, . . . ,M . In this
sequence, “1” denotes the packet was successfully received,
and “0” denotes the packet was dropped. fc(i) is derived
by computing the auto-correlation function of this sample
sequence. Such measurement can take place online or of-
fline. A detailed discussion on how fc(i) is derived is out
of the scope of this paper, and we simply assume that this
information is given as input to our detection algorithm.

There is an independent auditor Ad in the network. Ad is
independent in the sense that it is not associated with any
node in PSD and does not have any knowledge of the secrets
(e.g., cryptographic keys) held by various nodes. The audi-
tor is responsible for detecting malicious nodes on demand.
Specifically, we assume S receives feedback from D when D
suspects that the route is under attack. Such a suspicion
may be triggered by observing any abnormal events, e.g.,
a significant performance drop, the loss of multiple packets
of a certain type, etc. We assume that the integrity and
authenticity of the feedback from D to S can be verified
by S using resource-efficient cryptographic methods such as
the Elliptic Curve Digital Signature Algorithm (ECDSA).
Once being notified of possible attacks, S submits an attack-
detection request (ADR) to Ad. To facilitate its investiga-
tion, Ad needs to collect certain information (elaborated on



in the next section) from the nodes on route PSD. We as-
sume that each such node must reply to Ad’s inquiry, other-
wise the node will be considered as misbehaving. We assume
that normal nodes will reply with truthful information, but
malicious nodes may cheat. At the same time, for privacy
reasons, we require that Ad cannot determine the content of
the normal packets delivered over PSD from the information
collected during the auditing.

3.2 Adversarial Model
The goal of the adversary is to degrade the network’s

performance by maliciously dropping packets while remain-
ing undetected. We assume that the malicious node has
knowledge of the wireless channel, and is aware of the algo-
rithm used for misbehavior detection. It has the freedom to
choose what packets to drop. For example, in the random-
drop mode, the malicious node may drop any packet with
a small probability pd. In the selective-mode, the malicious
node only drops packets of certain types. A combination
of the two modes may be used. We assume that any node
on PSD can be a malicious node, except the source and the
destination. In particular, there can be multiple malicious
nodes on PSD.

We consider the following form of collusion between ma-
licious nodes: A covert communication channel may exist
between any two malicious nodes, in addition to the path
connecting them on PSD. As a result, malicious nodes can
exchange any information without being detected by Ad or
any other nodes in PSD. Malicious nodes can take advan-
tage of this covert channel to hide their misbehavior and
reduce the chance of being detected. For example, an up-
stream malicious node may drop a packet on PSD, but may
secretely send this packet to a downstream malicious node
via the covert channel. When being investigated, the down-
stream malicious node can provide a proof of the successful
reception of the packet. This makes the auditor believe that
the packet was successfully forwarded to the downstream
nodes, and not know that the packet was actually dropped
by an upstream attacker.

3.3 Problem Statement
Under the system and adversary models defined above, we

address the problem of identifying the nodes on PSD that
drop packets maliciously. We require the detection to be per-
formed by a public auditor that does not have knowledge of
the secrets held by the nodes on PSD. When a malicious
node is identified, the auditor should be able to construct
a publicly verifiable proof of the misbehavior of that node.
The construction of such a proof should be privacy preserv-
ing, i.e., it does not reveal the original information that is
transmitted on PSD. In addition, the detection mechanism
should incur low communication and storage overheads, so
that it can be applied to a wide variety of wireless networks.

4. PROPOSED DETECTION SCHEME

4.1 Overview
The main idea of our detection algorithm is to compare

the autocorrelation function of the observed packet loss pro-
cess of a link with that of a normal wireless channel (i.e.,
fc(i)) to accurately identify any possible malicious packet
drops. The necessity of exploiting the correlation of lost
packets to improve the detection accuracy can be illustrated
by examining the insufficiency of the conventional method
that relies only on the distribution of the number of lost

 

(a) mean of y much greater
than mean of x

 

(b) mean of y is comparable
to mean of x

Figure 2: Insufficiency of conventional detection al-
gorithms when malicious packet drops are highly se-
lective.

packets. More specifically, under the conventional method,
malicious-node detection is modeled as a binary hypothesis
test, where H0 is the hypothesis that there is no malicious
node in a given link (all packet losses are due to link er-
rors) and H1 denotes there is a malicious node in the given
link (packet losses are due to both link errors and malicious
drops). Let z be the observed number of lost packets on the
link during some interval t. Then,

z =

{
x, under H0 (no malicious nodes)
x+ y, under H1 (there is a malicious node)

(1)

where x and y are the numbers of lost packets caused by
link errors and by malicious drops, respectively. Both x and
y are random variables. Let the probability density func-
tions of z conditioned on H0 and on H1 be h0(z) and h1(z),
respectively, as shown in Figure 2(a). We are interested in
the maximum-uncertainty scenario where the a priori prob-
abilities are given by Pr{H0} = Pr{H1} = 0.5, i.e., the
auditor has no prior knowledge of the distributions of H0

and H1 to make any biased decision regarding the presence
of malicious nodes. Let the false-alarm and miss-detection
probabilities be Pfa and Pmd, respectively. The optimal
decision strategy that minimizes the total detection error

Pde
def
= 0.5(Pfa + Pmd) is the maximum-likelihood (ML) al-

gorithm: {
if z ≤ zth, accept H0

otherwise, accept H1
(2)

where the threshold zth is the solution to the equation h0(zth) =
h1(zth). Under this strategy, Pfa and Pmd are the areas of
the shaded regions shown in Figure 2(a), respectively. The
problem with this mechanism is that, when the mean of y is
small, h1(z) and h0(z) are not sufficiently separated, leading
to large Pfa and Pmd, as shown in Figure 2(b). This obser-
vation implies that when malicious packet drops are highly
selective, counting the number of lost packets is not sufficient
to accurately differentiate between malicious drops and link
errors. For such a case, we use the correlation between lost
packets to form a more solid decision statistic.

To correctly calculate the correlation between lost pack-
ets, it is critical to enforce a truthful packet-loss bitmap
report by each node. We use HLA cryptographic primitive
for this purpose. The basic idea of our method is as follows.
An HLA scheme allows the source, which has knowledge of
the HLA secret key, to generate HLA signatures s1, . . . , sM
for M independent messages r1, . . . , rM , respectively. The
source sends out the ri’s and si’s along the route. The HLA
signatures are made in such a way that they can be used as
the basis to construct a valid HLA signature for any arbi-
trary linear combination of the messages,

∑M
i=1 ciri, without



the use of the HLA secret key, where ci’s are randomly cho-
sen coefficients. A valid HLA signature for

∑M
i=1 ciri can

be constructed by a node that does not have knowledge of
the secret HLA key if and only if the node has full knowl-
edge of s1, . . . , sM . So, if a node with no knowledge of the
HLA secret key provides a valid signature for

∑M
i=1 ciri, it

implies that this node must have received all the signatures
s1, . . . , sM . Our construction ensures that si and ri are sent
together along the route, so that knowledge of s1, . . . , sM
also proves that the node must have received r1, . . . , rM .

Our detection architecture consists of four phases: setup,
packet transmission, audit, and detection. We elaborate on
these phases in the next section.

4.2 Scheme Details

4.2.1 Setup Phase
This phase takes place right after route PSD is established,

but before any data packets are transmitted over the route.
In this phase, S decides on a symmetric-key crypto-system
(encryptkey, decryptkey) andK symmetric keys key1, . . . , keyK ,
where encryptkey and decryptkey are the keyed encryption
and decryption functions, respectively. S securely distributes
decryptkey and a symmetric key keyj to node nj on PSD,
for j = 1, . . . ,K. Key distribution may be based on the
public-key crypto-system such as RSA: S encrypts keyj us-
ing the public key of node nj and sends the cipher text to nj .
nj decrypts the cipher text using its private key to obtain
keyj . S also announces two hash functions, H1 and HMAC

key ,

to all nodes in PSD. H1 is unkeyed while HMAC
key is a keyed

hash function that will be used for message authentication
purposes later on.

Besides symmetric key distribution, S also needs to set
up its HLA keys. Let e : G × G → GT be a computable
bilinear map with multiplicative cyclic group G and support
Zp, where p is the prime order of G, i.e., for all α, β ∈
G and q1, q2 ∈ Zp, e(αq1 , βq2) = e(α, β)q1q2 . Let g be a
generator ofG. H2(.) is a secure map-to-point hash function:
{0, 1}∗ → G, which maps strings uniformly to G. S chooses
a random number x ∈ Zp and computes v = gx. Let u be
another generator of G. The secret HLA key is sk = x and
the public HLA key is a tuple pk = (v, g, u).

4.2.2 Packet Transmission Phase
After completing the setup phase, S enters the packet

transmission phase. S transmits packets to PSD according
to the following steps.

Before sending out a packet Pi, where i is a sequence num-
ber that uniquely identifies Pi, S computes ri = H1(Pi) and
generates the HLA signatures of ri for node nj , as follows

sji = [H2(i||j)uri ]x, for j = 1, . . . ,K (3)

where || denotes concatenation. These signatures are then
sent together with Pi to the route by using a one-way chained
encryption that prevents an upstream node from decipher-
ing the signatures intended for downstream nodes. More
specifically, after getting sji for j = 1, . . . ,K, S iteratively

computes the following:

s̃Ki = encryptkeyK (sKi)

τKi = s̃Ki||MACkeyK (s̃Ki)

s̃K−1i = encryptkeyK−1(sK−1i||τKi)

τK−1i = s̃K−1i||MACkeyK−1(s̃K−1i)

...

s̃ji = encryptkeyj (sji||τj+1i)

τji = s̃ji||MACkeyj (s̃ji)

...

s̃1i = encryptkey1(s1i||τ2i)
τ1i = s̃1i||MACkey1(s̃1i) (4)

where the message authentication code (MAC) in each stage
j is computed according to the hash function HMAC

keyj
. After

getting τ1i, S puts Pi||τ1i into one packet and sends it to
node n1.

When node n1 receives the packet from S, it extracts Pi,
s̃1i, and MACkey1(s̃1i) from the received packet. Then, n1

verifies the integrity of s̃1i by testing the following equality:

MACkey1(s̃1i) = HMAC
key1 (s̃1i). (5)

If the test is true, then n1 decrypts s̃1i as follows:

decryptkey1(s̃1i) = s1i||τ2i. (6)

Then, n1 extracts s1i and τ2i from the decrypted text. It
stores ri = H1(Pi) and s1i in its proof-of-reception database
for future use. This database is maintained at every node on
PSD. It can be considered as a FIFO queue of size M , which
records the reception status for the most recent M packets
sent by S. Finally, n1 assembles Pi||τ2i into one packet and
relays this packet to node n2. In case the test in (5) fails, n1

marks the loss of Pi in its proof-of-reception database and
does not relay the packet to n2.

The above process is repeated at every intermediate node
nj , j = 1, . . . ,K. As a result, node nj obtains ri and its HLA
signature sji for every packet Pi that the node has received,
and it relays Pi||τj+1i to the next hop on the route. The last
hop, i.e., node nK , only forwards Pi to the destinationD. As
proved in Theorem 4 in Section 4.3, the special structure of
the one-way chained encryption construction in (4) dictates
that an upstream node on the route cannot get a copy of the
HLA signature intended for a downstream node, and thus
the construction is resilient to the collusion model defined
in Section 3.2. Note that here we consider the verification
of the integrity of Pi as an orthogonal problem to that of
verifying the tag τji. If the verification of Pi fails, node n1

should also stop forwarding the packet and should mark it
accordingly in its proof-of-reception database.

4.2.3 Audit Phase
This phase is triggered when the public auditor Ad re-

ceives an ADR message from S. The ADR message includes
the id of the nodes on PSD, ordered in the downstream di-
rection, i.e., n1, . . . , nK , S’s HLA public key information
pk = (v, g, u), the sequence numbers of the most recent M
packets sent by S, and the sequence numbers of the subset
of these M packets that were received by D. Recall that
we assume the information sent by S and D is truthful, be-
cause detecting attacks is in their interest. Ad conducts the
auditing process as follows.



Ad submits a random challenge vector c⃗j = (cj1, . . . , cjM )
to node nj , j = 1, . . . ,K, where the elements cji’s are
randomly chosen from Zp. Without loss of generality, let
the sequence number of the packets recorded in the current
proof-of-reception database be P1, . . . , PM , with PM being
the most recent packet sent by S. Based on the informa-
tion in this database, node nj generates a packet-reception

bitmap b⃗j = (bj1, . . . , bjM ), where bji = 1 if Pi has been
received by nj , and bji = 0 otherwise. Node nj then calcu-

lates the linear combination r(j) =
∑M

i=1,bji ̸=0 cjiri and the

HLA signature for the combination as follows:

s(j) =
∏

i=1,bji ̸=0

s
cji
ji . (7)

Node nj submits b⃗j , r(j), and s(j) to Ad, as proof of the
packets it has received.

Ad checks the validity of r(j) and s(j) by testing the fol-
lowing equality:

e(s(j), g) = e(

M∏
i=1,bji ̸=0

H2(i||j)cjiur(j) , v). (8)

If the equality holds, then Ad accepts that node nj received

the packets as reflected in b⃗j . Otherwise, Ad rejects b⃗j and

judges that not all packets claimed in b⃗j are actually received
by nj , so nj is a malicious node. We prove the correctness
of this auditing algorithm in Section 4.3.

Note that the above mechanism only guarantees that a
node cannot understate its packet loss, i.e., it cannot claim
the reception of a packet that it actually did not receive.
This mechanism cannot prevent a node from overly stating
its packet loss by claiming that it did not receive a packet
that it actually received. This latter case is prevented by
another mechanism discussed in the detection phase.

4.2.4 Detection Phase
The public auditor Ad enters the detection phase after

receiving and auditing the reply to its challenge from all
nodes on PSD. The main tasks of Ad in this phase include
the following: detecting any overstatement of packet loss
at each node, constructing a packet-loss bitmap for each
hop, calculating the autocorrelation function for the packet
loss on each hop, and deciding whether malicious behavior
is present. More specifically, Ad performs these tasks as
follows.

Given the packet-reception bitmap at each node, b⃗1, . . . , b⃗K ,
Ad first checks the consistency of the bitmaps for any pos-
sible overstatement of packet losses. Clearly, if there is no
overstatement of packet loss, then the set of packets received
at node j + 1 should be a subset of the packets received at
node j, for j = 1, . . . ,K − 1. Because a normal node always
truthfully reports its packet reception, the packet-reception
bitmap of a malicious node that overstates its packet loss
must contradict with the bitmap of a normal downstream
node. Note that there is always at least one normal down-
stream node, i.e., the destination D. So Ad only needs to se-

quentially scan b⃗j ’s and the report from D to identify nodes
that are overstating their packet losses.

After checking for the consistency of b⃗j ’s, Ad starts con-

structing the per-hop packet-loss bitmap m⃗j from b⃗j−1 and

b⃗j . This is done sequentially, starting from the first hop
from S. In each step, only packets that are lost in the cur-
rent hop will be accounted for in mj . The packets that
were not received by the upstream node will be marked as

“not lost” for the underlying hop. Denoting the “lost”packet
by 0 and “not lost” by 1, m⃗j can be easily constructed by

conducting a bit-wise complement-XOR operation of b⃗j−1

and b⃗j . For example, consider the following simple case
with three intermediate nodes (four hops) on the route and

with M = 10. Suppose that b⃗1 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1),

b⃗2 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 1), b⃗3 = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1),

and the destinationD reports that b⃗D = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1).
Then the per-hop packet-loss bitmaps are given by m⃗1 =
(0, 1, 1, 1, 1, 1, 1, 1, 0, 1), m⃗2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), m⃗3 =
(1, 1, 0, 1, 1, 0, 1, 1, 1, 1), and m⃗4 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The auditor calculates the autocorrelation function γj for
each sequence m⃗j = (mj1, . . . ,mjM ), j = 1, . . . ,K, as fol-
lows

γj(i) =

∑M−i
k=1 mjkmjk+i

M − i
, for i = 0, . . . ,M−1; j = 1, . . . ,K.

(9)
The auditor then calculates the relative difference between
γj and the ACF of the wireless channel fc as follows

ϵj =

M−1∑
i=0

|γj(i)− fc(i)|
fc(i)

. (10)

The relative difference ϵj is then used as the decision statis-
tic to decide whether or not the packet loss over the jth
hop is caused by malicious drops. In particular, if ϵj ≥ ϵth,
where ϵth is an error threshold, then Ad decides that there
is malicious packet drop over the hop. In this case, both
ends of the hop will be considered as suspects, i.e., either
the transmitter did not send out the packet or the receiver
chose to ignore the received packet. S may choose to ex-
clude both nodes from future packet transmissions, or alter-
natively, apply a more extensive investigation to refine its
detection. For example, this can be done by combining the
neighbor-overhearing techniques [9] used in the reputation
system. By fusing the testimony from the neighbors of these
two nodes, Ad can pin-point the specific node that dropped
the packet. Once being detected, the malicious node will be
marked and excluded from the route to mitigate its damage.

The above detection process applies to one end-to-end
path. The detection for multiple paths can be performed
as multiple independent detections, one for each path. Al-
though the optimal error threshold that minimizes the de-
tection error is still an open problem, our simulations show
that through trial-and-error, one can easily find a good ϵth
that provides a better detection accuracy than the optimal
detection scheme that utilizes only the pdf of the number of
lost packets.
Public Verifiability: After each detection, Ad is required
to publish the information it received from involved nodes,

i.e., b⃗j , r(j), s(j), for j ∈ PSD, so that a node can ver-
ify all calculation has been performed correctly. Note that
no knowledge of the HLA secret key x is required in the
verification process. At the same time, because Ad has no
knowledge of x, there is no way for it to forge a valid HLA
signature for r(j). In other words, Ad cannot claim a misbe-
having node to be a normal one. Furthermore, the privacy-
preserving property of the scheme (see Theorem 4 in Sec-
tion 4.3) ensures that publishing the auditing information
will not compromise the confidentiality of the communica-
tion.



4.3 Security Analysis
We prove that the proposed scheme has the following se-

curity properties.
Theorem 1: The verification of r(j) and s(j), as specified
in (8), is correct, i.e., (8) must hold for a (c⃗j , r

(j), s(j)) tuple
that is constructed according to the specification presented
in Section 4.2.3.
Proof: The correctness of (8) is shown as follows:

e(s(j), g) = e

 M∏
i=1,bji ̸=0

s
cji
ji , g


= e

 M∏
i=1,bji ̸=0

{H2(i||j)uri}xcji , g


= e

 M∏
i=1,bji ̸=0

{H2(i||j)uri}cji , g

x

= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiucjiri , g

x

= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiur(j) , gx


= e

 M∏
i=1,bji ̸=0

H2(i||j)cjiur(j) , v

 . (11)

So Theorem 1 holds.
Theorem 2: The construction specified in Section 4.2 is
secure under the collusion model defined in Section 3.2, i.e.,
an adversary that does not receive a packet Pi cannot claim

receiving this packet in its b⃗j by forging a HLA signature for
a random linear combination of the received packets, even
if this adversary colludes with any other malicious node in
PSD.
Proof: For a given node nj , our construction essentially fol-
lows the BLS-signature-based HLA construction described
in [24]. Under the implicitly assumed condition of no collu-
sion between attackers, the authors in [24] proved that the
construction is secure, i.e., no adversary can forge a response
to a random challenge if it does not know the HLA signa-
ture of each packet in the linear combination. So here, we
only need to show that collusion between malicious nodes
does not give the attacker more information about the HLA
signature of the packets. This can be shown by observing
the following novel properties of our HLA construction:

1. For a packet Pi, the signature scheme specified in (3)
dictates that its HLA signature sji is not only tied to
the packet sequence number (i), but also related to the
node index (j) that is relaying the packet. This means
that for the same packet, each hop on PSD is given
a different HLA signature. The verification scheme in
(8) accounts for both i and j. In the no-collusion case,
by treating the concatenation of (i||j) as a meta packet
sequence number, the security of our construction can
be proved in the same way as that in [24].

2. The way that the HLA signatures are distributed to
nodes on PSD, as specified in (4), dictates that an up-
stream node nj cannot get a copy of the HLA signature
sj′i of a downstream node nj′ , where j < j′ ≤ K, un-
less the downstream node nj′ receives the signature

sj′i first on PSD and then sends it through the covert
channel to the upstream node nj . Therefore, there is
no way for a downstream malicious node to get any
information on its HLA signature if the upstream at-
tacker drops the packet. As a result, the secret infor-
mation exchange on the covert channel does not help
the adversary to get more information on its HLA sig-
nature than the scenario where there is no collusion.

Combining the above arguments, Theorem 2 is proved.

Theorem 3: The proposed scheme ensures that the packet-
reception bitmap reported by a node in PSD is truthful.

The validity of Theorem 3 is straightforward, because
Theorem 2 guarantees that the node cannot understate its
packet loss information. At the same time, from our discus-
sion in Section 4.2.4, it is clear that a malicious node cannot
overstate its packet loss either. So a node must report its
actual packet reception information truthfully to Ad.
Theorem 4: Our HLA construction is publicly verifiable
and privacy preserving, i.e., the auditor Ad does not require
the secret key of the HLA scheme to verify a node’s response.
In addition, Ad cannot determine the content of the packets
transmitted over PSD from the information submitted by
nodes.
Proof: Public verifiability is clear from the construction of
the scheme. The privacy-preserving property is guaranteed
by the application of the secure hash function H1. More
specifically, instead of directly computing the HLA signature
for a packet Pi, our construction computes the signature for
the image of the packet ri = H1(Pi). During the auditing
phase, Ad can collect a set of linear combinations of ri’s.
So it is possible for Ad to calculate ri’s by solving a set of
linear equations, if a sufficient number of combinations are
collected. Even if Ad can recover ri, it should not be able to
guess Pi because of H1’s resilience to the pre-image attack.

4.4 Overhead Analysis
The proposed scheme requires relatively high computation

capability at the source, but incurs low communication and
storage overheads along the route, as explained below.

4.4.1 Computation Requirements
Most of the computation is done at the source node (for

generating HLA signatures) and at the public auditor (for
conducting the detection process). We consider the pub-
lic auditor as a dedicated service provider that is not con-
strained by its computing capacity. So the computational
overhead should not be a factor limiting the application of
the algorithm at the public auditor. On the other hand,
the proposed algorithm requires the source node to generate
K HLA signatures for a K-hop path for each data packet.
The generation of HLA signatures is computationally ex-
pensive, and may limit the applicability of the algorithm.
One solution to this problem is to make the signature scal-
able, e.g., instead of generating a per-packet signature, a
per-block signature may be generated, where each block has
L packets. Accordingly, the detection will be extended to
blocks (a block is defined as lost if a packet in the block
is lost). This could significantly reduce the computational
overhead at the source. This method will be evaluated in
our future work.



4.4.2 Communication Overhead
The communication overhead for the setup phase is a one-

time cost, incurred when PSD is established. Here we mainly
focus on the recurring cost during the packet transmission
and auditing phases (there is no communication overhead in
the detection phase). For a transmitted packet Pi, S needs
to send one encrypted HLA signature and one MAC to each
intermediate node on PSD. Our HLA signature follows the
BLS scheme in [5]. So an HLA signature sij is 160-bit long.
If encrypted by DES, the encrypted signature s̃ij is 192 bits
in length (a block in DES is 64-bit long, so the length of
the cipher text of DES is multiples of 64 bits). The MAC-
related hash function HMAC

key can be implemented in SHA-1
and has a length of 160 bits. So for each packet, the per-hop
communication overhead incurred by the proposed scheme
in the packet transmission phase is 192 + 160 = 352 bits,
or 44 bytes. For a path of K intermediate hops, the total
communication overhead for transmitting a packet is 44K
bytes. For example, when K = 10, the overhead is 440
bytes/packet. For an IEEE 802.11 system, this is about
19% of the maximum MSDU (2304 bytes).

In the auditing phase, the auditor Ad sends a random
challenge vector c⃗j to each node nj . Let each element in
this vector be a 32-bit integer. The challenge has a length of
4M bytes. Based on our simulation in Section 5, M = 50 is
typically enough to achieve good detection accuracy. So this
means each challenge can be delivered in one packet. Node

nj replies to the challenge with b⃗j , r
(j), and s(j). Among

them, b⃗j is an M -bit bitmap. r(j) is the linear combination
of the SHA-1 image of the packets, so r(j) also has a length
of 160 bits. s(j) is an HLA signature of r(j), so it is also
160-bit long. Overall, the reply from a node to Ad has a
length of 320 + M bits, which can also be delivered in one
packet.

4.4.3 Storage Overhead
During its operation, a node nj on PSD needs to store

the key keyj , the H1 hash image, and the associated HLA
signature for each of the M most recently received pack-
ets. Assuming encryptkey and decryptkey are based on DES,
keyj has a length of 56 bits. Let the hash function H1 be
based on SHA-1. So theH1 image of a packet is 160-bit long.
The HLA signature is based on BLS (Boneh-Lynn-Shacham)
scheme [5] and is 160-bit long. So in total the storage over-
head at nj is 320M+56 bits, or 40M+7 bytes. This storage
overhead is quite low. For example, when M ≤ 50, the stor-
age overhead at a node is less than 2 KB.

5. PERFORMANCE EVALUATION

5.1 Simulation Setup
In this section, we compare the detection accuracy achieved

by the proposed algorithm with the optimal maximum like-
lihood (ML) algorithm, which only utilizes the distribution
of the number of lost packets. For given packet-loss bitmaps,
the detection on different hops is conducted separately. So,
we only need to simulate the detection of one hop to evalu-
ate the performance of a given algorithm. We assume pack-
ets are transmitted continuously over this hop, i.e., a satu-
rated traffic environment. We assume channel fluctuations
for this hop follow the Gilbert-Elliot model, with the tran-
sition probabilities from good to bad and from bad to good
given by PGB and PBG, respectively. We consider two types
of malicious packet dropping: random dropping and selec-

tive dropping. In the random dropping attack, a packet is
dropped at the malicious node with probability PM . In the
selective dropping attack, the adversary drops packets of
certain sequence numbers. In our simulations, this is done
by dropping the middle N of the M most recently received
packets, i.e., setting the N bits in the middle of the packet-
loss bitmap to 0 (if a packet in these positions is dropped
due to link errors, then the set of 0’s extends to an extra bit
in the middle). PM and N are simulation parameters that
describe the selectivity of the attack. In both cases, we let
ϵth = 10% for the proposed algorithm.

We are interested in the following three performance met-
rics: probability of false alarm (Pfa), probability of miss-
detection (Pmd), and the overall detection-error probabil-
ity (Perror). We collect these statistics as follows. In each
run, we first simulate 1000 independently generated packet-
loss bitmaps for the hop, where packet losses are caused by
link errors only. We execute our detection algorithm over
these packet-loss bitmaps and collect the number of cases
where the algorithm decides that an attacker is present.
Let this number be Ifa. Pfa of this run is calculated as
Pfa = Ifa/1000. We then simulate another 1000 indepen-
dently generated packet-loss bitmaps, where losses are now
caused by both link errors and malicious drops. Let the
number of cases where the detection algorithm rules that
an attacker is not present be Imd. Pmd of the underly-
ing run is given by Pmd = Imd/1000. Perror is given by
Perror = (Ifa + Imd)/2000. The above simulation is re-
peated 30 times, and the mean and 95% confidence interval
are computed for the various performance metrics.

5.2 Results

5.2.1 Random Packet Dropping
The detection accuracy is shown in Figure 3 as a function

of the malicious random-drop rate PM . In each subfigure,
there are two sets of curves, representing the proposed al-
gorithm and the optimal ML scheme, respectively. In each
set of curves, the one in the middle represents the mean,
and the other two represent the 95% confidence interval. In
general, the detection accuracy of both algorithms improves
with PM (i.e., the detection error decreases with PM ). This
is not surprising, because malicious packet drops become
more statistically distinguishable as the attacker starts to
drop more packets. In addition, this figure shows that for
ϵth = 10%, the proposed algorithm provides slightly higher
false-alarm rate (subfigure (c)) but significantly lower miss-
detection probability (subfigure (b)) than the ML scheme. A
low miss-detection probability is very desirable in our con-
text, because it means a malicious node can be detected
with a higher probability. The slightly higher false-alarm
rate should not be a problem, because a false alarm can be
easily recognized and fixed in the post-detection investiga-
tion phase. Most importantly, the overall detection-error
probability of the proposed scheme is lower than that of the
ML scheme (subfigure (a)). We are especially interested in
the regime when PM is comparable to the average packet loss
rate due to link errors, given by PGB

PGB+PBG
= 0.01

0.01+0.5
≈ 0.02.

This regime represents the scenario in which the attacker
hides its drops in the background of link errors by mimicking
the channel-related loss rate. In this case, the ML scheme
cannot correctly differentiate between link errors and mali-
cious drops. For example, when PM = 0.01, the ML scheme
results in Pmd = 80% and Pfa = 23%. This is close to ar-
bitrarily ruling that every packet loss is due to link error



only, leading to an overall detection-error rate of 50% (see
subfigure (a)). Our proposed algorithm, on the other hand,
achieves a much better detection accuracy, because its Pmd

and Pfa are both lower than those under the ML scheme.
As a result, when PM = 0.01, the total detection-error rate
of the proposed algorithm is about 35%. When PM is in-
creased to 0.04, Perror of the proposed scheme reduces to
only 20%, which is roughly half of the error rate of the ML
scheme at the same PM . Remembering that the detection-
error rate of the ML scheme is the lowest among all detection
schemes that only utilize the distribution of the number of
lost packets, the lower detection-error rate of the proposed
scheme shows that exploiting the correlation between lost
packets helps in identifying the real cause of packet drops
more accurately. The effect of exploiting the correlation
is especially visible when the malicious packet-drop rate is
comparable with the link error rate.

In Figure 4, we plot the detection accuracy as a function
of the size of the packet-loss bitmap (M). It can be observed
that Perror for the proposed scheme decreases withM . How-
ever, as M becomes sufficiently large, e.g., M = 30 in our
case, a further increase in the size of the bitmap does not lead
to additional improvement in the detection accuracy. This
can be explained by noting that the two-state Markovian GE
channel model has a short-range dependence, i.e., the corre-
lation between two points of the fluctuation process decays
rapidly with the increase in the separation between these
points. This short-range dependence is reflected in an expo-
nentially decaying autocorrelation function for the channel.
As a result, a good estimation of the autocorrelation func-
tion can be derived as long as M is long enough to cover the
function’s short tail. This phenomenon implies that a node
does not need to maintain a large packet-reception database
in order to achieve a good detection accuracy under the pro-
posed scheme. It also explains the low storage overhead in-
curred by our scheme.

The detection accuracy is plotted in Figure 5 as a function
of the channel state transition rate PGB . It can be observed
from this figure that Perror for both algorithms increases
with PGB . This is not surprising because at its initial point
of PGB = 0.01, the expected link error rate is about 0.02,
which is much smaller than the malicious packet drop rate of
PM = 0.1. So it is relatively easy to differentiate between the
case where packet drops are caused by link errors only and
the one where such drops are caused by the combined effect
of link errors and malicious drops. As PGB increases, the
link error probability approaches PM , making the statistical
separation of the two cases harder. As a result, the detection
error increases with PGB . For all values of PGB in this figure,
the proposed algorithm always achieves significantly lower
detection-error probability than the ML scheme.

5.2.2 Selective Packet Dropping
The detection error as a function of the number of mali-

ciously dropped packets is shown in Figure 6. At the low end
of the x-axis, maliciously dropped packets account for only
1/50 = 2% of the total packets in the packet-loss bitmap.
This is identical to the link error rate of 0.02, assumed in
the simulation. Similar performance trends can be observed
to the case of the random packet dropping. Fewer detection
errors are made by both algorithms when more packets are
maliciously dropped. In all the simulated cases, the pro-
posed algorithm can detect the actual cause of the packet
drop more accurately than the ML scheme, especially when
the number of maliciously dropped packets is small. When

the number of maliciously dropped packets is significantly
higher than that caused by link errors (greater than 4 pack-
ets in our simulation), the two algorithms achieve compara-
ble detection accuracy. In this scenario, it may be wise to
use the conventional ML scheme due to its simplicity (e.g.,
no need to enforce truthful reports from intermediate nodes,
etc).

The detection errors are plotted in Figure 7 as a function
of the size of the packet-loss bitmap (M). To conduct a fair
comparison, as we increase M , we also increase the number
of maliciously dropped packets, so as to maintain a malicious
packet-dropping rate of 10%. It can be observed that a
small M is enough to achieve good detection accuracy under
the proposed scheme, due to the short-range dependence
property of the channel.

In Figure 8, the detection errors are plotted as a function
of the channel state transition probability PGB . Similar
trends are observed to those in the random packet drop-
ping case, i.e., the algorithms make more detection errors
when the link error rate approaches the malicious packet-
drop rate. Once again, the proposed algorithm consistently
outperforms the ML scheme in all the tested cases.

6. CONCLUSIONS
In this paper, we showed that compared with conventional

detection algorithms that utilize only the distribution of the
number of lost packets, exploiting the correlation between
lost packets significantly improves the accuracy in detect-
ing malicious packet drops. Such improvement is especially
visible when the number of maliciously dropped packets is
comparable with those caused by link errors. To correctly
calculate the correlation between lost packets, it is criti-
cal to acquire truthful packet-loss information at individual
nodes. We developed an HLA-based public auditing archi-
tecture that ensures truthful packet-loss reporting by indi-
vidual nodes. This architecture is collusion proof, requires
relatively high computational capacity at the source node,
but incurs low communication and storage overheads over
the route.

Some open issues remain to be explored. First, the com-
putational overhead at source nodes needs to be reduced.
As we pointed out in Section 4.4.1, a block-based HLA sig-
nature could be explored. We will evaluate the effect of this
method as our next step. Second, in this paper, we mainly
focused on showing the feasibility of the proposed mecha-
nism. The decision threshold used in the detection was ob-
tained by trial-and-error. In our future work, we will study
the optimization of this threshold. Last but not least, the
proposed detection algorithm does not account for topologi-
cal changes in the network. The impact of dynamic topology
remains an issue to be evaluated.
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and the ↪ařConnection One ↪aś center. Any opinions, findings,
conclusions, or recommendations expressed in this paper are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

8. REFERENCES
[1] J. N. Arauz. 802.11 Markov channel modeling. Ph.D.

Dissertation, School of Information Science,
University of Pittsburgh, 2004.



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Malicious packet−dropping rate

D
e

te
ct

io
n

−
e

rr
o

r 
P

ro
b

a
b

ili
ty

ML scheme

Proposed scheme

P
GB

=0.01, P
BG

=0.5,

M=30

(a) Overall detection-error probability

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Malicious packet−dropping rate
M

is
s−

d
e

te
ct

io
n

 P
ro

b
a

b
ili

ty
 

 

ML scheme

Proposed scheme

P
GB

=0.01,
P

BG
=0.5, M=30

(b) Miss-detection probability

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Malicious packet−dropping rate

F
a

ls
e

−
a

la
rm

 P
ro

b
a

b
ili

ty

 

 

ML scheme

Proposed schemeP
GB

=0.01,
P

BG
=0.5, M=30

(c) False-alarm probability

Figure 3: Detection accuracy vs. PM (random packet-drop case).
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Figure 4: Detection accuracy vs. M (random packet-drop case).
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Figure 5: Detection accuracy vs. PGB (random packet-drop case).
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Figure 6: Detection accuracy vs. number of maliciously dropped packets (selective packet-drop case).
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Figure 7: Detection accuracy vs. M (selective packet-drop case).
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Figure 8: Detection accuracy vs. PGB (selective packet-drop case).
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