
Spectrum-efficient Stochastic Channel Assignment

for Opportunistic Networks

Mohammad J. Abdel-Rahman∗, Fujun Lan∗∗, and Marwan Krunz∗

∗ Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
∗∗ Dept. of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA

{mjabdelrahman, flan, krunz}@email.arizona.edu

Abstract—The uncertainty in channel quality due to fading
and shadowing along with the unpredictability of primary user
(PU) activity make channel assignment in opportunistic spectrum
access (OSA) networks quite challenging. In this paper, we
propose two per-link channel assignment models under channel
uncertainty: a static single-stage and an adaptive two-stage. In the
static model, channel assignment is performed once, such that the
rate demands are met with a probability greater than a certain
threshold. This model is appropriate for a distributed network
with no centralized spectrum manager. The adaptive model is a
two-stage assignment model, where the initial assignment may
be corrected once the uncertainties are partially revealed, such
that the excess spectrum is returned back to the spectrum
manager. This adaptive model is more appropriate when a cen-
tralized spectrum manager is available. Our channel assignment
algorithms account for adjacent channel interference (ACI) by
introducing guard-bands between adjacent channels that are
assigned to different links. These algorithms aim at maximizing
the spectral efficiency, considering the impact of guard-bands.
The static ACI-aware channel assignment problem is formulated
as a chance-constrained stochastic subset-sum problem (CSSP),
and the adaptive assignment problem is formulated as a two-stage
chance-constrained stochastic subset-sum problem with recourse
(CSSPR). We develop heuristic algorithms for both models and
test their performance. Preliminary results demonstrate that the
proposed heuristic algorithms are highly efficient.

Index Terms—Channel assignment, opportunistic spectrum
access, spectrum efficiency, stochastic optimization, subset-sum
problem.

I. INTRODUCTION

Motivated by the need for more efficient utilization of the

licensed spectrum and facilitated by recent regulatory polices,

significant research has been conducted towards developing

cognitive radio (CR) technologies for opportunistic spectrum

access (OSA) networks. In an OSA system, secondary users

(SUs) employ CRs to access the available spectrum in an

opportunistic fashion, without interfering with co-located in-

cumbent users, i.e., primary users (PUs).

Channel quality in OSA networks is uncertain. This is

partially due to inherent multi-path fading and shadowing,

and partially to the unpredictability of PU activity. Recently,

the FCC advocated using a database (DB) to facilitate OSA.

According to this approach, the SU acquires the set of avail-

able channels in its geographical area through a centralized

DB. The DB is mostly concerned with SU-to-PU interference,

but not PU-to-SU interference [1]. It declares a channel to be

available at a given location if the PU signal transmitted over

this channel cannot be successfully decoded by a PU receiver

at that location. As indicated in [2], the decodability threshold

for a digital TV signal is ∼ 15 dB, which means that the TV

signal is ∼ 32 times stronger than the noise level at the limit

of the reception range. Therefore, even if a channel is declared

available by the DB, this does not mean that it is completely

clean, and it can still have a substantial “pollution” due to PU

transmissions. Hence, even with the DB approach, PU activity

still impacts SU transmissions. The dynamics of this activity

causes the channel quality of an OSA network to be uncertain.

In this paper, we propose two (sequential) channel assign-

ment models under channel uncertainty. In the first (static)

model, channel assignment is performed in a single stage

such that the rate demand of an SU link is satisfied with

a probability greater than a certain threshold. This model

is appropriate for a distributed network with no centralized

spectrum manager. The second model is a two-stage (adaptive)

assignment model. In the first stage, channel assignment

is performed assuming probabilistically modeled uncertainty

in channels quality. After uncertainties in channel rates are

partially revealed, when SUs start using the selected channels,

they return the excess spectrum (if any) to the spectrum

manager. The returned spectrum can then be used by other

links in the network. This potentially increases the number of

satisfied links in a resource-constrained network. The adaptive

model is more efficient when a centralized spectrum manager

is available.

In addition to channel uncertainty, our stochastic channel

assignment models consider two other aspects. They support

channel bonding and aggregation, and they account for ad-

jacent channel interference (ACI). Channel bonding refers to

the bundling of multiple adjacent channels, which can then

be treated as a single frequency block whose data rate is

approximately the sum of the data rates of the individual

channels. On the other hand, bundling multiple non-adjacent

frequency channels is referred to as channel aggregation.

Channel bonding and aggregation have been adopted by the re-

cent IEEE 802.11n and the upcoming IEEE 802.11ac standards

[3]. ACI is a form of power leakage from adjacent channels

due to imperfections in the design of filters and amplifiers in

the radio device. The impact of ACI on network throughput

was demonstrated in [4].

Most existing channel assignment algorithms do not account

for ACI, and assume no power leakage between adjacent chan-



nels. To mitigate ACI, guard-bands are needed between adja-

cent channels that belong to different SUs. Introducing guard

bands constrains the effective use of the spectrum. In [5], the

authors proposed spectrum-efficient guard-band-aware (GBA)

channel assignment mechanisms under two scenarios: guard-

band reuse and no guard-band reuse. In the first model, guard-

bands can be shared between adjacent transmissions, whereas

in the second model, two adjacent transmissions require two

distinct guard-bands. The GBA channel assignment mecha-

nisms in [5] do not necessarily result in the optimal spectrum

efficiency (i.e., minimum number of newly introduced guard

bands). Adopting the guard-band reuse model, an optimal

spectrum-efficient GBA channel assignment mechanism was

proposed in [6]. The channel assignment mechanism in [6] was

formulated as a subset-sum problem (SSP) [7], assuming that

the maximum transmission rates supported by various channels

are deterministic. In this paper, we consider the more general

case where channel rates are random with a known discrete

distribution, and we develop two channel assignment schemes

for this environment. The discrete rate distribution is obtained

from the well-known staircase relationship between the rate

and signal-to-interference-plus-noise ratio (SINR), assuming

the channel model (i.e., SINR distribution) is known.

Main Contributions–Our main contributions in this paper

are summarized as follows:

1. We formulate and solve a probabilistically constrained

single-stage ACI-aware channel assignment problem for

OSA networks under channel uncertainty. This problem is

first formulated as a chance-constrained stochastic subset-

sum problem (CSSP). Then, the chance constraint is re-

formulated, and the CSSP problem is transformed into a

binary integer linear program (BILP).

2. We formulate and solve a probabilistically constrained two-

stage ACI-aware channel assignment problem under chan-

nel uncertainty. The problem is first formulated as a two-

stage chance-constrained stochastic subset-sum problem

with recourse (CSSPR). The chance constraint is used to

restrict the probability of not satisfying the link demand,

whereas the second stage is added to prevent over-satisfying

the link demand. The CSSPR is then reformulated as a

BILP.

3. We design computationally efficient heuristic algorithms for

the CSSP and CSSPR problems.

4. Numerically, we evaluate the heuristic algorithms and com-

pare them with the optimal solutions. Our results show that

the proposed heuristics are close-to-optimal.

To the best of our knowledge, this is the first paper that

studies the CSSP and CSSPR problems for the discrete distri-

bution case.

Paper Organization–The rest of this paper is organized as

follows. In Section II, we present the system model followed

by the problem statement. The static and adaptive channel as-

signment problems are formulated in Section III. The optimal

channel assignment models are reformulated in Section IV as

BILPs. Heuristic algorithms are also developed in Section IV.

Fig. 1: Example of a spectrum status.

In Section V, we present some numerical results. We conclude

the paper in Section VI.

II. PROBLEM STATEMENT

Consider an OSA network that operates over L licensed

channels. PU activity over each channel is modeled as a

continuous-time Markov chain with idle and busy states. For

a channel m, the transition rates from idle to busy and

vice versa are λ(m) and µ(m), respectively. The steady-state

probabilities that the PU is idle and busy over channel m are

π
(m)
idle = µ(m)/(µ(m)+λ(m)) and π

(m)
busy = λ(m)/(µ(m)+λ(m)),

respectively. The probability that a currently idle channel

remains idle during the next T seconds is p
(m)
i = e−λ(m)T , and

the probability that it becomes busy is p
(m)
b = 1− e−λ(m)T .

An idle channel can be used as a guard-band (if it is adjacent

to a busy channel), or as a data channel otherwise. Assume that

the current set of idle channels are grouped into N frequency

blocks (after reserving the needed guard-bands). Each block

consists of contiguous idle frequency channels. Let R̃i, i ∈
{1, 2, . . . , N} be a random variable representing the data rate

supported by the ith idle frequency block, denoted by IBi. We

consider a single-link with a rate demand of d Mbps. Given

the current spectrum status, i.e., the state of each of the L
licensed channels, our objective is to satisfy the rate demand

of the link while maximizing the spectrum efficiency. Figure 1

shows an example of a spectrum status.

The spectrum efficiency (SE) is defined as follows [6]. Let

hi, i ∈ {1, 2, . . . , L}, be a binary variable indicating whether

or not the ith channel is used as a data channel. Similarly,

let ηi be a binary variable indicating whether or not the ith
channel is reserved as a guard-band. Then, SE is given by:

SE =

∑L

i=1 hi
∑L

i=1 hi +
∑L

i=1 ηi
. (1)

It was shown in [6] that in order to minimize the number

of newly introduced guard bands, and hence maximize the

spectrum efficiency, channels need to be assigned on a per-

block basis, instead of the standard per-channel assignment.

Considering N idle frequency blocks, IB1, IB2, . . . , IBN , with

supported rates R̃1, R̃2, . . . , R̃N , respectively (drawn from a

known finite discrete distribution), the question we try to

answer is: what is the optimal block assignment strategy for

satisfying the link demand d?

We study the above problem considering two different

system models. In the first model, channel block-assignment

is performed once and cannot be corrected after the rates are

revealed. This corresponds to a network setup where channel

assignment is performed for each link independent of other



links. The second model allows for adjusting the block assign-

ment after the randomness are partially revealed, when nodes

start communicating over the assigned blocks. According to

the second model, the additional assigned blocks (if any) can

be returned back to a centralized spectrum manager, which

can then be exploited to satisfy the demands of other links.

This dynamic assignment approach increases the number of

admitted links in a resource-constrained network, operating

under the uncertainty of the quality of its channels.

III. PROBLEM FORMULATION

Let I = {1, 2, . . . , N} be the set of indices of the idle fre-

quency blocks and let xi, i ∈ I , be a binary variable; xi = 1 if

the ith frequency block is assigned, and 0 otherwise. Since the

rates of the idle frequency blocks (i.e., R̃i, i ∈ I) are random,

assigning the blocks only based on their expected rates may

result in link under-satisfaction when the actual rates are lower

than their expected values, or link over-satisfaction when the

actual rates are higher than their expected values. To handle

the uncertainty associated with these rates, we propose two

different models based on stochastic programming techniques.

The first model introduces a chance constraint to restrict the

percentage of the occurrence of under-satisfaction, whereas the

second model goes a step further, allowing for some corrective

action in case of over-satisfaction.

A. Static Single-stage Assignment

In this section, we formulate the block assignment problem

for the first model explained in Section II, where block

assignment is performed once (i.e., in a single stage) and

correcting the assignment after observing the actual block rates

is not allowed. The uncertainty of the rates supported by the

frequency blocks causes the feasible region of the assignment

problem to be random. Different stochastic optimization ap-

proaches have been proposed in the literature to deal with

uncertainty in the feasible region of an optimization problem

[8]. In this paper, we adopt a chance constraint approach.

As mentioned before, the optimal frequency-block assign-

ment problem was formulated in [6] as a subset-sum problem,

assuming deterministic channel rates. In this section, we for-

mulate the assignment problem under channel-rate uncertainty

as a chance-constrained stochastic subset-sum problem (CSSP)

with a finite discrete distribution. The CSSP formulation is

given by:

CSSP:

minimize
xi,i∈I

N
∑

i=1

µixi (2)

subject to Pr

{

N
∑

i=1

R̃ixi ≥ d

}

≥ β (3)

xi ∈ {0, 1}, ∀i ∈ I (4)

where µi
def
= E[R̃i] and β ∈ (0, 1] is a prescribed probability.

The decision variable xi, i ∈ I , equals one if block i is

assigned, and zero otherwise. The objective (2) is to mini-

mize the total expected rate of the assigned blocks, and the

chance constraint (3) enforces satisfying the link demand with

probability ≥ β. While the chance constraint probabilistically

accounts for link under-satisfaction, it does not hedge against

the problem of link over-satisfaction. We need to avoid over-

satisfying the link, because in a resource-constrained network

with multiple links operating in parallel, over-satisfying one

link may result in under-satisfying other links in the network.

B. Adaptive Two-stage Assignment

In this section, we formulate the block assignment problem

for the second, adaptive model explained in Section II. The

frequency blocks are initially assigned based on their expected

rates while satisfying the chance constraint. After the actual

rates supported by the assigned blocks are observed, additional

blocks (if any) are released and returned to the network

spectrum manager. The returned blocks can then be used by

other links in the network.

The adaptive assignment problem is formulated as a two-

stage chance-constrained stochastic subset-sum problem with

recourse (CSSPR).

CSSPR:

minimize
xi,i∈I

{

N
∑

i=1

µixi + E

[

h(x, R̃)
]

}

(5)

subject to Pr

{

N
∑

i=1

R̃ixi ≥ d

}

≥ β (6)

xi ∈ {0, 1}, ∀i ∈ I (7)

where h(x, R̃) is the optimal value of the second-stage

problem:

minimize
yi,i∈I

{

−
N
∑

i=1

αiR̃iyi

}

(8)

subject to yi ≤ xi, ∀i ∈ I (9)

N
∑

k=1

(xk − yk)R̃k ≥ dyi, ∀i ∈ I (10)

yi ∈ {0, 1}, ∀i ∈ I. (11)

The second-stage decision variable yi, i ∈ I , equals one if

block i is removed, and zero otherwise. The objective (8) is the

(negative of) the total rate of the removed blocks. We assume

that the rate of each block IBi, i ∈ I , at the second stage (i.e.,

when the block is released after it was previously assigned)

is strictly smaller than its first-stage rate, i.e., 0 ≤ αi < 1.

This way, the later the block is used by a link the smaller

the rate this block can support. Setting αi to be strictly less

than one for all i ∈ I avoids having an undesirable aggressive

assignment (when αi = 1, ∀i ∈ I), in which a single link

reserves all available blocks and then releases the additional

ones. This approach is undesirable because all resources will

be allocated to one link first, then all the surplus blocks will

be allocated to another link, and so on. Constraint (9) enforces

that only blocks that have been assigned in the first stage

may be removed, and constraint (10) ensures that a block



can be removed only when the first-stage assignment has

led to an over-satisfaction, and that the link demand remains

satisfied after the removal. As in CSSP, a chance constraint

is introduced in the first stage to restrict the probability of

under-satisfaction.

We note that CSSPR has a relatively complete recourse, i.e.,

for every feasible first-stage decision xi satisfying (6) and (7),

there exists a feasible solution to the second-stage problem

under each scenario ω ∈ Ω (e.g., yi = 0, ∀i ∈ I is always a

feasible solution to the second-stage problem).

Towards this point, we would like to mention relevant

literature dealing with the (static) stochastic knapsack problem.

Compared to a subset-sum problem, in a general knapsack

problem the value of an item (i.e., its coefficient in the

objective function) is different from its weight [7]. To name

a few, Kosuch and Lisser [9] presented a chance-constrained

model, and a two-stage model with simple recourse, for

knapsack problems with random weights. In [10], Kosuch and

Lisser formulated a chance-constrained two-stage stochastic

program with recourse, where items can be added to or

removed from the knapsack in the second stage, when the

actual weights become known. However, existing stochastic

knapsack formulations either assume a continuous standard

distribution (mostly normal) or assume that in the second stage

all uncertainties are exposed. In our CSSPR formulation, we

assume a finite discrete distribution with known probability

mass function (pmf). Moreover, we assume that uncertainties

are partially revealed in the second stage, as explained before,

which leads us to consider only removing assigned blocks to

avoid introducing new uncertainty by adding new blocks.

IV. PROBLEM REFORMULATION AND SOLUTION

APPROACH

In this section, we first present the deterministic equivalent

programs (DEPs) for the CSSP and CSSPR problems. The

DEP is an equivalent reformulation of the original stochastic

program that contains only deterministic variables. We then

propose a heuristic algorithm for solving each problem.

A. Static Single-stage Assignment

1) Deterministic Equivalent Program:

The DEP of CSSP is given below. Note that the chance

constraint in (3) is replaced with the two constraints in (13)

and (14), following the same reformulation trick used in

the quadratic knapsack formulation in [11]. Constraints (13)

and (14) basically say that the sum of the probabilities of the

scenarios under which the link demand may not be satisfied

is ≤ 1 − β, which gives the same meaning as the chance

constraint (3).

CSSP (DEP):

minimize
xi,u

(ω)

i∈I,ω∈Ω

N
∑

i=1

µixi (12)

subject to

N
∑

i=1

R
(ω)
i xi ≥ d(1− u(ω)), ∀ω ∈ Ω (13)

∑

ω∈Ω

p(ω)u(ω) ≤ 1− β (14)

xi ∈ {0, 1}, ∀i ∈ I (15)

u(ω) ∈ {0, 1}, ∀ω ∈ Ω (16)

where Ω is the set of scenarios (in here, a scenario represents

one realization of the rates of various blocks) and p(ω) is the

probability of scenario ω ∈ Ω. u(ω), ω ∈ Ω, is a binary

variable, which equals zero if the block assignment needs

to satisfy the demand d under scenario ω, and equals one

otherwise. We remark that CSSP (DEP) is a binary integer

linear program (BILP).

2) Heuristic Algorithm:

We motivate our heuristic algorithm as follows. Based on

Markov’s inequality [12], the left-hand-side of the chance

constraint (3) can be bounded from above as follows:

Pr

{

N
∑

i=1

R̃ixi ≥ d

}

≤
E

[

∑N

i=1 R̃ixi

]

d

=

∑N

i=1 µixi

d
.

(17)

Hence, constraint (3) implies:

N
∑

i=1

µixi ≥ dβ. (18)

However, (18) does not necessarily imply (3). Therefore,

we heuristically make (18) more stringent by multiplying

the right-hand-side of (18) with a constant κ > 1 so that

constraint (18) becomes:

N
∑

i=1

µixi ≥ κdβ. (19)

The value of κ is determined empirically such that (19) best

approximates the chance constraint (3). After replacing (3)

with (19), CSSP becomes a standard subset-sum problem,

which can then be solved efficiently [13].

Our heuristic algorithm can be summarized by the following

steps: it was said

1. Replace the chance constraint (3) in CSSP with (19), and

solve the resulting (deterministic) subset-sum problem.

2. Evaluate (3) with respect to the obtained solution.

• If (3) is satisfied, terminate.

• Otherwise, modify the current solution by selecting

more blocks from the unassigned ones, starting with

the block that has the smallest expected rate until a

feasible solution to (3) is found. Then, terminate.

• Finally, if assigning all the blocks does not result in a

feasible solution, the problem is declared infeasible.

Constraint (3) is evaluated for a given block assignment as

follows:

1. We descendingly sort the scenarios according to their

probabilities (p(ω) for scenario ω ∈ Ω).



2. Starting from the most probable scenario, we do the fol-

lowing:

• Evaluate the link demand constraint
∑N

i=1 R
(ω)
i xi ≥ d

under scenario ω ∈ Ω.

• If scenario ω satisfies the link demand constraint,

increment the probability of satisfying the link demand

by p(ω).

• If the total probability of satisfying the link demand

reaches or exceeds β, then the given block assignment

satisfies (3). Otherwise, go to the next most probable

scenario.

3. If all the scenarios have been considered and the total

probability of satisfying the link demand is less than β,

then the given block assignment does not satisfy (3).

B. Adaptive Two-stage Assignment

1) Deterministic Equivalent Program:

The DEP of CSSPR is given below. Similar to CSSP, the

chance constraint in (6) is replaced with the constraints in (21)

and (22).

CSSPR (DEP):

minimize
xi,y

(ω)
i

,u(ω)

i∈I,ω∈Ω

{

N
∑

i=1

µixi −
∑

ω∈Ω

p(ω)

(

N
∑

i=1

αiR
(ω)
i y

(ω)
i

)}

(20)

subject to

N
∑

i=1

R
(ω)
i xi ≥ d(1− u(ω)), ∀ω ∈ Ω (21)

∑

ω∈Ω

p(ω)u(ω) ≤ 1− β (22)

y
(ω)
i ≤ xi, ∀i ∈ I, ∀ω ∈ Ω (23)

N
∑

k=1

(xk − y
(ω)
k )R

(ω)
k ≥ dy

(ω)
i , ∀i ∈ I, ∀ω ∈ Ω (24)

xi ∈ {0, 1}, ∀i ∈ I (25)

y
(ω)
i ∈ {0, 1}, ∀i ∈ I, ∀ω ∈ Ω (26)

u(ω) ∈ {0, 1}, ∀ω ∈ Ω. (27)

Again, CSSPR (DEP) is a BILP.

2) Heuristic Algorithm:

1. Follow the same heuristic approach in Section IV-A2 to

get a first-stage feasible solution (i.e., a feasible xi, i ∈ I).

Otherwise, the problem is declared infeasible.

2. Fixing the first-stage solution, solve the second-stage prob-

lem for each scenario. The solution to this problem is used

to determine the blocks that need to be excluded from the

initial assignment.

We note that the first-stage solution produced by the above

heuristic needs be feasible, because, as we mentioned earlier,

CSSPR has a relatively complete recourse. Moreover, for a

fixed first-stage solution and a specific scenario realization,

the second-stage problem reduces to a subset-sum problem.

TABLE I: Rate distribution for five frequency blocks.

IB1 IB2 IB3 IB4 IB5

Rate Prob. Rate Prob. Rate Prob. Rate Prob. Rate Prob.

R1 0.1 R1 0.05 R1 0.0 R1 0.0 R1 0.0

R2 0.8 R2 0.1 R2 0.05 R2 0.05 R2 0.0

R3 0.1 R3 0.7 R3 0.4 R3 0.1 R3 0.1

R4 0.0 R4 0.1 R4 0.5 R4 0.8 R4 0.4

R5 0.0 R5 0.05 R5 0.05 R5 0.05 R5 0.5

To see this, rearrange constraint (10) as (28) and consider the

set of blocks that have been assigned in the first stage only:

N
∑

k=1
k 6=i

R̃kyk + (R̃i + d)yi ≤
N
∑

k=1

R̃kxk. (28)

V. PERFORMANCE EVALUATION

We numerically evaluate the performance of CSSP and

CSSPR. We set N = 5. Each frequency block can take

one of the following rates: R1 = 0 Mbps, R2 = 1 Mbps,

R3 = 2 Mbps, R4 = 4 Mbps, and R5 = 6 Mbps, with

the probability distribution shown in Table I. αi is set to 0.8

for all i ∈ I . We solve both CSSP and CSSPR for different

combinations of β and d values. CPLEX is used to solve the

deterministic equivalent programs, CSSP (DEP) and CSSPR

(DEP), and obtaining their respective optimal solutions. Our

proposed heuristic algorithms produce upper bounds for both

models. We set κ = 1.5 in (19) for the heuristics as it was

found to be efficient for most instances.

Figure 2 depicts the optimal and the heuristically obtained

expected link throughput of CSSP (i.e., the value of the

objective function (2)) versus β for d = 6, 10, and 14 Mbps.

The figure shows that for β ≥ 0.7, the optimal expected

link throughput generally exceeds the demand, and that the

throughput increases with β. Moreover, Figure 2 shows that

the heuristic solutions are relatively close to the optimum, and

at some instances both solutions coincide.

Figure 4 depicts the expected link throughput of CSSPR

versus β for d = 6, 10, and 14 Mbps. The optimal expected

link throughput again increases with β, but more slowly

compared with the expected link throughput of CSSP. This

is due to the recourse action in the second stage of CSSPR, in

which we attempt to remove additional blocks. This results in a

smaller net link throughput. Once again, the heuristic solution

is found to be relatively close to the optimum. Note that the

CSSP and CSSPR problems are both infeasible when d = 14
Mbps and β > 0.7.

Figures 3 and 5 show the expected link throughput of CSSP

and CSSPR, respectively vs. d for β = 0.7, 0.8, and 0.9. As

can be seen, for large values of β and d the CSSP and CSSPR

problems turn out to be infeasible. Also, these figures show

that the proposed heuristic algorithms achieve a relatively

close-to-optimal performance.

VI. CONCLUSIONS

In this paper, we proposed two channel assignment models

under channel uncertainty: a single-stage static assignment
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Fig. 3: Expected link throughput vs. d for the single-stage channel assignment.
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Fig. 5: Expected link throughput vs. d for the two-stage channel assignment.

model and a two-stage adaptive assignment model. Both

assignment models were formulated using stochastic opti-

mization techniques. Optimal solutions for the formulated

assignment problems were obtained, and simple but efficient

heuristic algorithms were developed. The proposed assignment

algorithms also account for adjacent channel interference.

The performance of the heuristic algorithms was numerically

evaluated against the optimal solution under different values

of the model parameters. Our preliminary computational re-

sults indicate that the proposed heuristic algorithms are quite

efficient.
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would like to thank Dr. Güzin Bayraksan, Integrated Systems

Engineering Department, The Ohio State University, for her

helpful discussions on stochastic optimization.

REFERENCES

[1] K. Harrison, S. M. Mishra, and A. Sahai, “How much white-space
capacity is there?” in Proceedings of the IEEE DySPAN Conference,
2010, pp. 1–10.

[2] Y. Wu, E. Pliszka, B. Caron, P. Bouchard, and G. Chouinard, “Com-
parison of terrestrial DTV transmission systems: the ATSC 8-VSB, the
DVB-T COFDM, and the ISDB-T BST-OFDM,” IEEE Transactions on

Broadcasting, vol. 46, no. 2, pp. 101–113, 2000.
[3] D. Skordoulis, Q. Ni, H.-H. Chen, A. Stephens, C. Liu, and A. Ja-

malipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-
generation high-throughput WLANs,” IEEE Transactions on Wireless

Communications, vol. 15, no. 1, pp. 40–47, Feb. 2008.
[4] V. Angelakis, S. Papadakis, V. Siris, and A. Traganitis, “Adjacent

channel interference in 802.11a is harmful: Testbed validation of a
simple quantification model,” IEEE Communications Magazine, vol. 49,
no. 3, pp. 160–166, March 2011.

[5] H. Bany Salameh, M. Krunz, and D. Manzi, “An efficient guard-band-
aware multi-channel spectrum sharing mechanism for dynamic access
networks,” in Proceedings of the IEEE GLOBECOM Conference, Dec.
2011, pp. 1–5.

[6] G. S. Uyanik, M. J. Abdel-Rahman, and M. Krunz, “Optimal guard-
band-aware channel assignment with bonding and aggregation in multi-
channel systems,” to appear in the Proceedings of the IEEE GLOBE-

COM Conference, Dec. 2013.
[7] S. Martello and P. Toth, Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, 1990.
[8] P. Kall and S. W. Wallace, Stochastic Programming. John Wiley and

Sons, 1994.
[9] S. Kosuch and A. Lisser, “Upper bounds for the 0-1 stochastic knapsack

problem and a B&B algorithm,” Annals of Operations Research, vol.
176, pp. 77–93, 2010.

[10] S. Kosuch and A. Lisser, “On two-stage stochastic knapsack problems,”
Discrete Applied Mathematics, vol. 159, pp. 1827–1841, 2011.

[11] A. Lisser and R. Lopez, “Stochastic quadratic knapsack with recourse,”
Electronic Notes in Discrete Mathematics, vol. 36, pp. 97–104, 2010.

[12] A. Klappenecker, “Markov’s inequality.” [Online]. Available:
http://faculty.cs.tamu.edu/klappi/csce689-s10/markov.pdf.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.


