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Abstract—We address the problem of preventing the inference of contextual information in event-driven wireless sensor networks
(WSNs). The problem is considered under a global eavesdropper who analyzes low-level RF transmission attributes, such as the
number of transmitted packets, inter-packet times, and traffic directionality, to infer event location, its occurrence time, and the
sink location. We devise a general traffic analysis method for inferring contextual information by correlating transmission times with
eavesdropping locations. Our analysis shows that most existing countermeasures either fail to provide adequate protection, or incur
high communication and delay overheads. To mitigate the impact of eavesdropping, we propose resource-efficient traffic normalization
schemes. In comparison to the state-of-the-art, our methods reduce the communication overhead by more than 50%, and the end-to-
end delay by more than 30%. To do so, we partition the WSN to minimum connected dominating sets that operate in a round-robin
fashion. This allows us to reduce the number of traffic sources active at a given time, while providing routing paths to any node in the
WSN. We further reduce packet delay by loosely coordinating packet relaying, without revealing the traffic directionality.

Index Terms—Wireless Sensor Networks (WSN), eavesdropping, contextual information, privacy, anonymity, graph theory.

1 INTRODUCTION

Wireless sensor networks (WSNs) have shown great
potential in revolutionizing many applications including
military surveillance, patient monitoring, agriculture and
industrial monitoring, smart buildings, cities, and smart
infrastructures. Several of these applications involve the
communication of sensitive information that must be
protected from unauthorized parties. As an example,
consider a military surveillance WSN, deployed to detect
physical intrusions in a restricted area [21], [25]. Such
a WSN operates as an event-driven network, whereby
detection of a physical event (e.g., enemy intrusion)
triggers the transmission of a report to a sink.

Although the WSN communications could be secured
via standard cryptographic methods, the communication
patterns alone leak contextual information, which refers
to event-related parameters that are inferred without ac-
cessing the report contents. Event parameters of interest
include: (a) the event location, (b) the occurrence time of
the event, (c) the sink location, and (d) the path from the
source to the sink [10], [20], [23], [29]. Leakage of contex-
tual information poses a serious threat to the WSN mis-
sion and operation. In the military surveillance scenario,
the adversary can link the events detected by the WSN
to compromised assets. Moreover, he could correlate the
sink location with the location of a command center, a
team leader, or the gateway. Destroying the area around
the sink could have far more detrimental impact than
targeting any other area. Similar operational concerns
arise in personal applications such as smart homes and
body area networks. The WSN communication patterns
could be linked to one’s activities, whereabouts, medical
conditions, and other private information.

Contextual information can be exposed by eaves-
dropping on over-the-air transmissions and obtaining
transmission attributes, such as inter-packet times, packet
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Fig. 1: Detection of event ¥ by eavesdroppers e; — es.

source and destination IDs, and number and sizes of
transmitted packets. As an example, consider the de-
tection of event ¥ by sensor v; in Fig. 1. Sensor v;
forwards an event report to the sink via v, vs, and
vg. Transmissions related to this report are intercepted
by eavesdroppers e; — e5. The event location can be
approximated to the sensing area of v;. The latter can
be estimated as the interception of the reception areas of
e; and ey, which overhear v,’s transmissions. Moreover,
the event occurrence time can be approximated to the
overhearing time of v;’s first transmission.

Defending against eavesdropping poses significant
challenges. First, eavesdroppers are passive devices that
are hard to detect. Second, the availability of low-cost
commodity radio hardware makes it inexpensive to de-
ploy a large number of eavesdroppers. Third, even if en-
cryption is applied to conceal the packet payload, some
fields in the packet headers still need to be transmitted in
the clear for correct protocol operation (e.g., PHY-layer
headers used for frame detection, synchronization, etc.).
These unencrypted fields facilitate accurate estimation of
transmission attributes.

The problem of preserving contextual information pri-
vacy has been studied under various adversarial scenar-
ios. Threat models can be classified based on the adver-
sary’s network view (local vs. global) or the capabilities
of the eavesdropping devices (packet decoding, local-
ization of the transmission source, etc.). Under a local
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model, eavesdroppers are assumed to intercept only a
fraction of the WSN traffic [12], [16]-[20]. Hiding meth-
ods include random walks, adding of pseudo-sources
and pseudo-destinations [14], [17]-[19], [27], creation of
routing loops [12], and flooding [12]. These methods
can only provide probabilistic obfuscation guarantees,
because eavesdroppers locations are unknown. Under
a global model, all communications within the WSN
are assumed to be intercepted and collectively analyzed
[7]1, [20], [29]. State-of-the-art countermeasures conceal
traffic associated to real events by injecting dummy
packets according to a predefined distribution [4], [20],
[23], [28]. In these methods, real transmissions take
place by substituting scheduled dummy transmissions,
which decorrelates the occurrence of an event from the
eavesdropped traffic patterns. However, concealment of
contextual information comes at the expense of high
communication overhead and increased end-to-end de-
lay for reporting events.

Our Contributions: We study the problem of resource-
efficient traffic randomization for hiding contextual in-
formation in event-driven WSN5s, under a global adver-
sary. Our main contributions are summarized as follows:

o We present a general traffic analysis method for
inferring contextual information that is used as a
baseline for comparing methods with varying as-
sumptions. Our method relies on minimal informa-
tion, namely packet transmission time and eaves-
dropping location.

o We propose traffic normalization methods that hide
the event location, its occurrence time, and the sink
location from global eavesdroppers. Compared to
existing approaches, our methods reduce the com-
munication and delay overheads by limiting the
injected bogus traffic. This is achieved by construct-
ing minimum connected dominating sets (MCDSs)
and MCDSs with shortest paths to the sink (SS-
MCDSs). We characterize the algorithmic complex-
ity for building SS-MCDSs and develop efficient
heuristics.

o To reduce the forwarding delay, we design a rate
control scheme that loosely coordinates sensor trans-
missions over multi-hop paths without revealing
real traffic patterns or the traffic directionality.

o We compare privacy and overhead of our tech-
niques to prior art and show the savings achieved.

Organization: Section 2 presents related work. In Section
3, we state the system and adversary models. Traffic
analysis techniques for extracting contextual information
are presented in Section 4. In Section 5, we introduce
our mitigation techniques. We evaluate their privacy and
performance in Section 6 and conclude in Section 7.

2 RELATED WORK

Prior art on contextual information privacy can be clas-
sified based on the privacy type and the eavesdropper
capabilities. Extensive literature reviews can be found in

recent surveys [5], [6]. Here, we present related work for
countering local and global eavesdroppers.

Local Eavesdropper: A local adversary can intercept
a limited number of transmissions within the WSN.
Typically, this adversary deploys a single or a few mobile
devices that attempt to localize source by backtracing the
intercepted transmissions. In [16], the authors proposed
the use of multiple routing paths to prevent local adver-
saries from tracing packets to their source. A sensor with
a real packet for transmission forwards it to one neighbor
on the shortest path to the sink. Any overhearing sensor
that does not belong to the shortest path, broadcasts a
dummy packet with some probability. This probability
is adapted to maintain the same average communication
overhead per sensor.

Mahmoud et al. [17]-[19] considered a highly-capable
adversary that can precisely localize the source of a
transmission using radiometric hardware. They pro-
posed the hotspot-locating attack for identifying areas with
high transmission activity and analytically showed that
the source can be located via backtracing. To hide the
source location, the authors proposed the introduction
of dummy traffic from sensor clouds that become active
only during real transmissions.

In [22], the authors proposed a two-stage routing
method called phantom flooding. In the first stage, the
source divides its neighbors into two sets, located in
opposite directions (e.g., North-South). The source for-
wards a packet to a randomly selected neighbor in one
direction. This neighbor continues to forward the packet
in the same manner, but in the opposite direction. The
process is repeated until h hops are traversed. In the
second stage, the packet is forwarded to the sink using
probabilistic flooding. In [14], [15], [27], real packets are
diverted to a fake source located several hops away,
using unicast transmissions. The fake source forwards
packets to the sink using flooding or over the shortest
path. These works differ in the selection process of
the fake source. In STaR [15], an intermediate node is
selected from a sink toroidal region. This area forms a ring
around the sink, starting from radius r and ending at R.
To report an event, the source routes packets to a random
destination in the toroidal region. The intermediate fake
source relays the packet to the sink via the shortest path.

Global Eavesdropper: In [20] the authors proposed
two traffic normalization techniques: periodic collection
and source simulation. In periodic collection, each sensor
generates bogus packets at a fixed rate. Real packets are
transmitted by substituting bogus ones, while maintain-
ing the same total rate (bogus and real). This method
hides the source location, the path to the sink, and the
sink location, at the expense of significant communi-
cation and delay overheads. In the source simulation
method, the communication overhead is reduced by
limiting dummy traffic to a subset of fake sources. The
fake source location is selected to follow the distribution
of real events. However, the spatial and temporal event
distribution must be known a priori.
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The authors in [23] proposed the transmission of
bogus traffic by all sensors using a pre-determined
probability distribution. To reduce the end-to-end delay,
sensors with real packets “rush” their transmissions rela-
tive to scheduled dummy transmissions. Future dummy
transmissions are delayed to compensate for the rushed
real packets. This method is not effective when multiple
real packets must be transmitted by the same source. In
addition, the authors in [2] proved that the short-long
inter-packet time patterns observed due to the rushed
transmissions can be used to identify time intervals that
contain real packets. To address this vulnerability, they
introduced fake short-long patterns.

In [29] the authors proposed several methods for
reducing dummy traffic. The network was divided into
square cells of size equal to the minimum area unit
where events can occur. Each cell generates encrypted
bogus traffic, which is replaced with real traffic when
available. In the Proxy-based Filtering Scheme (PES), a sub-
set of cells are designated as proxies. Each cell transmits
packets (real or dummy) to the closest proxy, which
filters dummy traffic and forwards real packets to the
sink. In the Tree-based Filtering Scheme (TFS), proxies are
organized as a tree rooted at the sink to expedite packet
delivery and reduce the filtered dummy packets. How-
ever, TFS reveals the sink location. In [4], the authors
proposed the Optimal Filtering Scheme (OFS), in which
proxies are organized into a directed graph instead of a
tree. This allows each proxy to filter packets from every
proxy as well as from individual sensors.

An aggregation-based scheme was introduced in [28].
The WSN is divided into clusters, each with one clus-
terhead (CH). The CHs are organized in a tree rooted
at the sink. Each sensor transmits dummy traffic to
its respective CH. The CH is responsible for filtering
dummy packets, aggregating real packets, and relaying
them to the sink. This method does not hide the sink
location, which corresponds to the root of the CH tree.

3 SYSTEM AND ADVERSARIAL MODEL

System Model: We consider a set of sensors V, deployed
to sense physical events within a given area. When a
sensor detects an event of interest, it sends a report to the
sink via a single-hop or a multi-hop route (depending
on the relative sensor-sink position). The confidentiality
of the report is protected using standard cryptographic
methods. Packet transmissions are re-encrypted on a
per-hop basis to prevent tracing of relayed packets [3],
[17], [19]. Sensors are aware of their one- and two-hop
neighbors by using a neighbor discovery service [24].
The sensor communication areas could be heterogeneous
and follow any model. The WSN is loosely synchronized
to a common time reference [1], [26]. The maximum
network-wide synchronization error is At. Finally, the
wireless medium is assumed to be lossy.

Adversarial Model: We adopt a global adversarial
model, similar to the one assumed in [2], [20], [23], [29].

The adversary deploys a set of eavesdropping devices A
that passively monitor all WSN transmissions. An eaves-
dropper e € A, located at /., has a reception area C.,,
which could have any shape (reception areas could be
heterogeneous and need not follow the unit-disc model).
We emphasize that this global adversarial model is a
relevant one even when a fraction of the WSN transmis-
sions can be intercepted. In the absence of eavesdropper
location information, one has to account for all possible
eavesdropping locations to provide privacy guarantees,
which is equivalent to a global adversarial model. The
adversary collectively analyzes the eavesdropped traffic
at a fusion center to infer the following information: (a)
the location of a physical event, (b) the occurrence time
of that event, and (c) the sink location.

To formally define the information at the disposal of
the adversary, we introduce the notions of a transmission
set and an observation set. The transmission set is a truth-
ful representation of all WSN transmissions taking place
over a period of time. The observation set represents
the actual information that is captured by the adversary
for a specific eavesdropper deployment and assumed
capability. Specifically, each packet p; is associated with
a unique signature o(p;) = {h(p;),t(p:),¢(p;)}, where
h(p;) is a hash digest of p;, t(p;) is the transmission
time of p;, and {(p;) is the location of the originating
sensor. The signature o(p;) constitutes the ground truth
for the transmission of p;. This ground truth may differ
from the observation of p; by an eavesdropper e, who
tags p; with tage(p;) = {h(pi), t(p:), Le}. A tage(p;) differs
from o(p;) in the location attributed to the source of
p;. Instead of ¢(p;), an eavesdropper e could at least
attribute p; to its own location /. and approximate ¢(p;)
with accuracy equal to e’s reception area C.. Using the
packet signatures and tags, we define the transmission
set and observation set as follows.

Definition 1 (Transmission Set): For a sensor v € V, the
transmission set ©, (W), defined over an epoch W is:

O, (W) = {a(p:) : £(ps) = Lo, t(p;) € W}.
The transmission set for the entire network over W is:

eoWw)={e,W):veV}.
Definition 2 (Observation Set): For an eavesdropper e,
the observation set O.(W) over W, is:

O.(W) = {tage(p:) : t(p;) € W}.
The observation set captured by A over W is:

OW) ={0.(W) :e € A}.

We are interested in evaluating the privacy maintained
under the analysis of O(W). We quantify this privacy
as the distance between the inferred location based
on O(W) and the location of the source. We call this
measure privacy distance and formally define it as follows.

Definition 3 (Privacy Distance): Let ¢ € R™ be some
private information of interest, estimated as = € R"
based on eavesdropping. The privacy distance of € is
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where s(€) is the Euclidean distance between € and ¢ €
=, and P(§) a probability measure over the points in =.

We note that Euclidean distance is a natural measure
for evaluating location privacy as it yields the straight-
line distance between the source location and its estimate
in any dimensional space. As sn example, €,Z € R?
for when location privacy is measured and sensors are
deployed in two dimensions. For the WSN of Fig. 1, v;
reports the occurrence of event ¥ during epoch W by
transmitting ©,, (W) to the sink. Eavesdroppers e; and
eq capture O, (W) and O, (W) respectively. By jointly
analyzing the collected observation sets, the adversary
localizes the event source to = = C, [ Ce,. All points
within = are assumed equally likely event sources (there
is no further information to bias the event location within
E). Therefore P(¢) = 1/area(Z). For this case,

1
Zm /5(5)(15-
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For a more meaningful evaluation of II, it must be
normalized to some application parameter. We leave the
normalization function up to the application designer. In
our evaluations, we have opted to normalize II with the
sensor communication range.

4 TRAFFIC ANALYSIS

In this section, we propose a general traffic analy-
sis method for inferring contextual information. Our
method is meant as a baseline for evaluating the per-
formance of protection mechanisms with varying un-
derlying assumptions. Therefore, it relies on minimal
information, namely the packet interception times and
eavesdroppers’ locations. Our method is agnostic to the
network topology (though it is inferred) and to the spe-
cific mechanism used to counter traffic analysis, so that
it can be broadly applied. We emphasize that our goal
is not to create the most sophisticated attack. Such an
attack is highly-dependent on the protection mechanism
and may require additional a priori knowledge. As an
example, the methods in [2], [23] use sophisticated sta-
tistical inference methods to detect real events. However,
these are specific to statistical anonymity approaches and
assume the a priori knowledge of the probability dis-
tribution used to draw inter-packet times. Our method
proceeds in the two stages: a traffic cleansing stage
followed by a contextual information inference stage.
Since our method is applied on a per-epoch basis, we
omit the W notation when it is redundant.
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The observation sets recorded by the scattered eaves-
droppers are likely to contain duplicate tags. This is
because more than one eavesdroppers may overhear the
same packet transmission. In the traffic cleansing stage,

Traffic Cleansing

the adversary uses duplicate tags in the observation set
O to obtain a better estimation of transmission set ©.

In Algorithm 1, we present a process for attribut-
ing tags to different sensors and eliminating duplicate
tags. Specifically, for two eavesdroppers a and e with
overlapping reception areas, we divide their respective
observation sets to tags intercepted in C, N C,, C,\C,
and C.\C,. Each tag set is associated with a sensor label
that represents the transmissions within the respective
area. The location of each sensor label is approximated
by the area intersection (difference) between C, and C..
Details are described in Algorithm 1.

Algorithm 1: Tag Cleansing

Step 1: For each eavesdropper e, set 6,=0,10,= C.,
and NS. = {v}. Here, v is a label for any sensor in C.,
{, is the approximation area of v’s location, and NS, is
the estimated sensor neighborhood of e.
Step 2: For each 6, anda € A,a #e, if ©,N0, # 0 and

©,\0, # 0, replace 6, with

éu :évmoa; éw :év\oa

The intersection and complement set operations are de-
fined based on the packet hash/timestamp dual con-
tained in the tags. Labels v and w represent new sensor
labels in e’s reception range, i.e., NS, = {u, w}.
Step 3: Approximate the locations of v and w by by =
l,NC, and £, = 0,\C,, respectively.
Step 4: Compute O and an estimate V of set V as:

V={v:veNS, Veec A}, O0={86, vef)}
Step 5: To eliminate duplicates from O and V find ©,,
©,, with ©, = 6,. Discard ©,, and update V = V\{u}.

Consider the application of Algorithm 1 on the
WSN of Fig. 2. Sensor v; reports an event by send-
ing packets pi, ps, and pz, which are relayed by v
(as ps, ps, and pg) and later by vz (as p7, ps, and
po). Traffic is eavesdropped by e; and ez, which cre-
ate sets O, {tage, (p1), - .,tage, (ps)} and O, =
{tagez (p4) tagez (pQ)}

In Step 1, label u; is associated to ®u1 = O, and us to
@M = O,. Steps 2 and 3 define new labelAs for ey, based
on the tag intersection and difference of ©,, and O.,.

Ous ={tag(p1),tag(p2),tag(ps)}, Llus = Lu, N Ce,,
Ou, ={tag(ps),tag(ps),tag(pe)}, Cus, =lu,\Ce,.
Similarly for ey,

Ou; ={tag(ps),tag(ps),tag(ps)}, Llus = Llu, NCe,
@ub :{tag(p7)a tag(pS)v tag(pQ)}v é?tﬁ = Zug\oel .
Also, NS(e1) = {us,us} and NS(e2) = {us, us}. In Step

4 the observation and sensor sets are consolidated as:

O = éu2 U éug U é?t{, U éUG, and f/ = {Ug,U4,U5,U6}.
Final}y, in Step 5, (:)u5 and wugy are eliminated from O
and V, respectively, since they are duplicates of u,. This
rAeduces V to {us,u4,us}. Note that sets ©,,, 0,,, and
O, form a partition of O. Also in this scenario, ez cannot
distinguish between v3’s and v4’s transmissions.
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Fig. 2: Tag cleansing using Algorithm 1 for two eaves-
droppers with heterogeneous reception areas.

4.2 Contextual Information Inference

In the second stage, the adversary performs timing anal-
ysis on O. The adversary takes advantage of the bursty
nature of traffic in event-driven WSNs to link traffic
streams with physical events. We organize tags in O into
disjoint sets )1, Vs, . .., where Y; is attributed to event ¥
( =1,2,...). The division depends on the temporal and
spatial tag correlation. For instance, consider packets p;
and py, from v and u in V. These packets are assigned to
the same event if |t(p1) —t(p2)| is between certain bounds
dependent on the distance between u and v. Details are
given in Algorithm 2.

Algorithm 2: Event Filtering

Step 1: Sort O in ascending order according to the tag
timestamps.

Step 2: Associate two consecutive packets p; and ps, of
O, from sensor labels u and v, with the same set ) if

5l(dmin(€u7€v)) < t(pZ) - t(Pl) < 5h(dmax(£u7€v))~
where ﬁl(drrlirl(éu,fv)) and Bh(dmax(@u, l%)) are lower and
upper bounds, depending on the minimum and maxi-
mum distance between areas /,, and /,, respectively.
Step 3: Otherwise, associate p; with V; and ps with V4.
Step 4: Associate tags in set ); to event ¥ ;.

Thresholds 5;(dmin (fu,év)) and Bh(dmax(@u,fv)) reflect
bounds on the minimum and maximum delays for re-
laying packets from #, to £,. The bounds are calculated
as a function of the minimum and maximum distance
between two areas measured in hops and the per-hop
relay delay. For instance, the lower bound is defined as

i . £,)) = T V‘“““J ,
v
where 7 is the sensor communication radius and 7}, is an
estimate of the packet transmission delay between two
hops. The lower threshold prevents false association of
tags recorded at distant parts of the WSN, due to event
concurrence. Similarly, the upper bound is defined as

Bh(dmax(‘guaév)) = Th \\dmax(juagv)J .

The upper bound associates transmissions that occur
close in time and in space with the same event. Both
thresholds were chosen assuming dense deployments in
which paths can be approximated by straight lines.

Algorithm 2 outputs sets of the type V; = ©,, U...U
@uy for y labels in V. The set Y; is used for the inference
of event V;. Moreover, the number of tags in each set
(:)ui € Y; identifies the number of packets transmitted
by w;. Sensors that relay an event report over W should
transmit the same number of packets (or approximately
the same, if packet retransmissions are present). Thus,
the adversary can also obtain an estimate of the number
of packets z triggered by event U;. The accuracy of this
estimation depends on the number of sensors associated
with each label. For example, in Fig. 2, after applying
Algorithm 1, the adversary obtains V= {ua, us, ug}, and
assigns the same label to v3 and va.

The adversary can utilize the size of each (:)u <IN
to estimate the number of sensors associated with each
label and the number of packets x that report ¥,. The
latter is estimated as the size of the smallest transmission
set in ;. Once the number of sensors per label is found,
a topology approximation is obtained by establishing
links between labels. Details are given in Algorithm 3.

Algorithm 3: Topology Approximation

Step 1: Let ¢, c,... be counters associated with each
label v in Y;, where ¢, = |0,|. Estimate the number of
packets sent by the source to report ¥, as

Z =min (¢1,c9,...).
Step 2: Estimate the number of sensors 7, associated

with label v and counter ¢, as 7, = | <.
Step 3: Establish a link (u,v) between labels v and v if

dmin (éua gv) S Y-

The value of 7,, as estimated in Step 2, is incorrect if
there are inactive sensors in the label area (e.g., v4 in Fig.
2), or if a single sensor concurrently relays traffic of more
than one events. Finally, based on sets V;, the adversary
can infer the source and sink location, the routing path
to the sink, and the event’s occurrence time associated
with event ¥, using Algorithm 4.

Algorithm 4: Contextual Information Inference

Step 1: Estimate the event location for ¥; as ém, where:

v* = arg mi‘g/l{t(pi) :tag(p;) € YV}
ve
The event location of ¥; is estimated to be the area of

the tag with the earliest transmission time in };.
Step 2: The occurrence time for )); is estimated as

8(5) = min{t(pi) : tag(pi) € V;},
ve
i.e., the earliest transmission time recorded in Y;.
Step 3: The path p(v, s) from the source v to the sink s
is estimated as the label sequence of tags in V; (sorted
in ascending order, based on transmission time).

Step 4: The sink location is estimated to the location area
5 of the last label in path p(v, s).

The sink location estimation can be iteratively im-
proved when multiple events are reported to the sink.
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Fig. 3: Randomization of traffic patterns.

5 EFFICIENT TRAFFIC NORMALIZATION

To counter traffic analysis, most existing solutions in-
troduce bogus traffic at every sensor [4], [20], [23], [29].
This is because all sensors are potential sources and the
eavesdroppers’ locations are unknown. Moreover, the
normalized traffic patterns can lead to the accumulation
of packet delay on a per-hop basis. For instance, consider
the path p(s,d) shown in Fig. 3. Assume that the traffic
rate of every sensor is normalized to one packet per 7.
The worst-case forwarding delay is equal to |p(s,d)|T,
where |p(s,d)| is the path length in hops. This delay
occurs when downstream sensors transmit earlier than
upstream ones within each interval. In the best case, the
forwarding delay reduces to 7', when upstream sensors
transmit earlier than downstream. Proposition 1 shows
that a packet will be forwarded over less than two hops
per T, on average.

Proposition 1: When sensors transmit one packet uni-
formly per interval T, the average number of hops that
a packet can traverse per 7" is 1.72.

Proof: The proof is provided in Appendix A. O

To address the inefficiencies of prior traffic normal-
ization methods, we first reduce the number of bogus
traffic sources. To do so, we divide time into epochs
and partition the set of sensors V into subsets. Only
one subset is active at a given epoch, and subsets are
periodically rotated in a round-robin fashion. A sensor
is allowed to send traffic (bogus or real) only if a subset
it belongs to is active. Each subset forms a subgraph
designed to satisfy the following properties: (a) it is
connected, (b) it can deliver packets to any vertex of the
original graph, and (c) the subgraph size is minimal.

Properties (a) and (b) guarantee that an active sub-
graph can deliver a real packet to the sink. Moreover,
the sink location remains hidden because all sensors
can be reached by the subgraph. Finally, property (c)
minimizes the number of active bogus traffic sources
per epoch required to satisfy properties (a) and (b). For
instance, Fig. 4 shows the partition of a small WSN
into 1)1 = {vl,v2,v3} and 2)2 = {v4,v5,v6,v7,vg} that
satisfy properties (a)-(c). Nodes in both D; and D; can
deliver a packet to any node in V. When D; becomes
active, vi,v2 and vs have a routing path to the sink
ve. To further reduce the forwarding delay, we loosely
coordinate sensor transmissions based on tree structures.
Our traffic normalization scheme consist of a network
partition and a transmission coordination phase.

Vs

|
I
|
|
|
|
|
|
I
I
|
|
|
|

V6
Fig. 4: Partition of V to two subgraphs D; and D;.

5.1

In the network partition phase, we partition V into sub-
sets {D1,...,D.}, which are activated in a round-robin
fashion. Sensors of an active subset transmit dummy
packets at a fixed packet rate. The dummy packets are
replaced with real ones, when a sensor of an active
subset reports an event. To satisfy design properties
(a)-(c), we reduce the problem of partitioning V to the
problem of finding a partition of connected dominating
sets (CDSs). A CDS is formally defined as follows [11].
Definition 4 (Connected Dominating Set): For a graph
G(V,€&), asubset D C V is a dominating set (DS) if any
vertex v € V either belongs to D, or is adjacent (within
one hop) to some vertex in D. If D induces a connected
subgraph on G, then D is a connected dominating set
(CDS). Moreover, the CDS with the smallest cardinality
is called a minimum connected dominating set (MCDS).
The partition of V to disjoint MCDSs satisfies proper-
ties (a)-(c). Property (a) is satisfied, as the set of MCDSs
spans V. Hence, each sensor can transmit real traffic
when its CDS becomes active. By design, the traffic
pattern of an active sensor is not altered when dummy
packets are replaced by real ones. For property (b), a
CDS ensures that any sensor in V is either part of D; or
within one hop from a sensor in D;. Moreover D; forms
a connected graph. Hence, a real packet transmitted by a
sensor in D; can be forwarded to any sensor in V using
only D;. Finally by definition, an MCDS minimizes the
size of each subgraph. However, we note that MCDSs
do not necessarily include shortest paths to the sink.
This could increase the forwarding delay. We further
investigate the construction of CDSs that contain the
shortest paths from any CDS sensor to the sink.

Network Partition Phase

5.1.1  Network Partition—Sets of Minimum Size

We first consider the partition of V into MCDSs. Such a
partition is not guaranteed to exist for arbitrary graphs
(e.g., a topology with a minimum vertex cut of one).
Moreover, the problem of computing a single MCDS is
NP-complete [9]. To address these limitations, we relax
the partition requirement and allow nodes to be part
of more than one MCDSs. We denote the appearance
frequency of node v to MCDSs as f(v). We propose
a heuristic algorithm that computes an approximation
of V’s partition by balancng between the appearance
frequency, the number of MCDSs that span V, and the
MCDS size. These parameters are used to control the
tradeoff between the end-to-end delay and the commu-
nication overhead. Note that, if V is partitioned to a
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Fig. 5: (a) Original WSN graph, (b) a DS generated in Stage 1, (c) a MCDS approximation generated in Stage 2.

large number of MCDSs, the number of epochs until
each MCDS becomes active increases, thus increasing the
end-to-end delay. However, a small number of MCDSs
results in larger communication overhead because more
sensors are active per epoch.

Algorithm 5: MCDS approximation-We generate a
CDS partition in three stages. In Stage 1, we construct
a minimum DS based on a well-known approximation
(the problem of computing a minimum DS is also NP-
complete [9]). In Stage 2, we connect the DS to generate
a CDS. The nodes selected to connect the DS minimize
the CDS size in a greedy fashion. In Stage 3, we repeat
stages 1 and 2 to obtain a partition of V to CDSs.

For each v € V, let m(v) be a marker, which can take
the values white, black, or gray. N* and [N¥] = N¥Uv are
v’s open and closed k-hop neighborhoods, respectively.
Let 6(v) = |N, | be the degree of v, and §*(v) the effective
degree of v. The latter is defined as the number of v’s
neighbors marked as white. Let r(v) be the rank of v,
defined as the order that v changed its marker relative
to a leader node. Finally, p(v) is the dominator node of
v. Initially, the appearance frequency of every node is set
to f(v) = 0. We base the marking process for generating
a DS to the algorithm presented in [13].

Stage 1: DS generation

Step 1: Each v € V initializes and broadcasts the values
of m(v) = white, 6*(v) = §(v), and r(v) = 0.

Step 2: A randomly chosen leader s sets m(s) = black
and broadcasts m(s),r(s), and f(s) to N5.

Step 3: A white node u receiving m(v) = black is
dominated by v, sets m(u) = gray, p(u) = v, and
r(u) = r(v) + 1. It then broadcasts m(u) and r(u) to N.
Step 4: A white node v receiving m(u) = gray from u €
N,, decreases §*(v) by one, updates r(v) = r(u) + 1 if
r(v) < r(u), and broadcasts §*(v) and r(v) to N,.

Step 5: A white node v changes m(v) to black, if

6*(u) 1 }
v = arg max X ) 1)
uEeN,] {5$1ax(v) flu)+1
where 67 . (v) = max,epn,)0*(u). Ties are broken arbi-

trarily. Node v becomes a “dominator” and broadcasts
m(v) = black and r(v) to N,.

Step 6: Repeat Steps 3-5 until all nodes are marked as
black (dominator) or gray (dominated).

With the termination of stage 1, the set of black nodes
forms a DS. Note that, the domination metric in Eq. (1)

tradeoffs between two competing factors: (a) the CDS
size and (b) the number of CDSs in the partition of V.
By maximizing 559?(”2) , we include in the DS nodes that
dominate the largest fraction of their neighbors within
their closed neighborhood. Therefore, the size of the
DS is reduced in a greedy fashion. On the other hand,
the factor favors the selection of nodes with the

1
Fw)+1 5
lowest appearance frequency. Because 5m::()v) < 1, the

factor ﬁ guarantees that every node will be part of
a CDS, and thus Algorithm 4 terminates. In Fig. 5(b), we
show the DS generated during Stage 1 for the graph of
Fig. 5(a). The color and rank of the nodes is also shown.

In Stage 2, we approximate the MCDS by adding gray
nodes that connect the greatest number of black nodes.
Let b(v) be the number of higher ranked black neighbors
of v.

Stage 2: MCDS Approximation

Step 1: Each gray node v € V broadcasts b(v) to N2 Step
2: Starting with the leader’s neighborhood, a gray node
v becomes black if,

b(u) 1

v argen;ax { b (0) X F)+ 1} , (2)
where Z = {u : u € [N2],r(u) = r(v)}, bmax(v) =
MAaX {4, [A2],m(u)=gray} b(v), and b(w),bmaez(v) > 0. Node
v broadcasts m(v) in N?2. Ties are broken arbitrarily.
Step 3: A node w € N, overhearing the change of u’s
marker from gray to black, with m(w) = black and r(w) =
r(u) + 1 sets and broadcasts p(w) = u to Ny.
Step 4: A gray node u overhearing p(w) from a black node
w with r(u) = r(w) + 1 broadcasts b(u) = b(u) — 1 to N2.
Step 5: Steps 2-4 are iterated for all black nodes in the
DS, until all gray nodes have a b(v) value equal to zero.
Step 6 (Pruning): If a black node v with f(v) > 0 does
not dominate at least one gray, it changes m(v) = gray.

After the execution of Step 5, each gray node has a
b(v) = 0, thus all black nodes of Stage 1 are dominated.
Moreover, these nodes are dominated by a gray node of
lower rank, that turns black in Step 3. Since the process is
initiated in the leader’s neighborhood, with the change
of a gray node into black, each dominated black node is
connected to the leader. Therefore, with the termination
of Stage 2, all black nodes have a path to the leader,
forming a CDS. Similarly to Stage 1, the metric used in
Eq. 2 tradeoffs between the CDS size and the number

of CDS in the partition. Maximizing the fraction bmba(:()v)
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benefits the nodes that connect the highest number of
black nodes in the DS, while W favors the selection
of nodes with the lowest appearance frequency. Finally,
in the pruning step, we eliminate all black nodes that do
not dominate any gray nodes, provided that these black
nodes have appeared at least at one CDS (f(v) > 0).

Fig. 5(c) shows the CDS generated in Stage 2 from the
DS of Fig. 5(b). In the final stage, the MCDS generation
process is iteratively applied until all sensors become
part of one MCDS.

Stage 3: MCDS Update

Step 1: Increment f(v) by one unit for all nodes in D;.
Step 2: Repeat Stages 1 and 2 until f(v) > 0, Vv € V.

Proposition 2: Stage 3 terminates in at most dmax + 1
iterations, where dy,,x = max{d(v) : Vo € V}.
Proof: The proof is provided in Appendix B. O

5.1.2 Network Partition—CDSs with Shortest Paths

We now consider the problem of partitioning V to CDSs
that contain the shortest paths from any CDS node to
the sink. We call this CDS type as a Single-destination
Shortest-path CDS (SS-CDS), defined it as follows.

Definition 5 (Single-destination Shortest-path CDS): Let
p(s, ) be the shortest path between s and p in G.
Let also 1 be a unique destination (sink). Set D C V
is a single-destination shortest-path CDS if for each
s € D, p(s, ) belongs to D. The set D with the smallest
cardinality is called a single-destination shortest-path
minimum connected dominating set (55-MCDS).

We first show that the problem of constructing SS-
MCDSs is NP-complete by reducing it to the Minimum
Shortest-path Steiner arborescence problem.

Proposition 3: The problem of finding an SS-MCDS in
arbitrary graphs is NP-complete.

Proof: The proof is provided in Appendix C. O

We propose a heuristic algorithm that approximates
the SS-MCDS in a greedy fashion and balances between
the appearance frequency of nodes in an SS-MCDS and
the number of SS-MCDSs that partition V. We now
describe our algorithm in detail.

Algorithm 6: SS-MCDS approximation-We modify
Algorithm 5 to generate an SS-MCDS partition of V. In
Algorithm 6, we run stage 1 of Algorithm 5 to generate
a DS, forcing the sink to be the leader. Then, we modify
Stage 2 of Algorithm 5 to restrict the selection of “bridge
nodes” (gray nodes turning black to connect DS nodes) to
those found in the shortest path to the sink. Initially, for
each v € V we set the appearance frequency to f(v) = 0.

Algorithm 6: SS-MCDS approximation

Step 1: Set the leader node s to the sink p and execute
stage 1 of Algorithm 5 to generate a DS.

Step 2: Each v € V with m(v) = gray broadcasts b(v) to
NZ, where b(v) is the number of black neighbors with
hop count |p(v, s)|+1 (at least one such neighbor exists).
Step 3: A gray node v becomes black if,
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Fig. 6: S5-MCDS obtained by Algorithm 6.

b(u) 1
(@) @) +1}’ ®

where Z = {u: u € Ny, |p(u, s)| = |p(v, s)|, m(u) = gray},
bmax(v) = MaX{ye[N2],m(u)=gray} b(u)/ and b(v), bmam(v) >
0. Node v broadcast m(v) in N2. Ties are broken arbi-
trarily. If |p(w,s)| > |p(v,s)| for w = p(v), node v sets
p(v) = nill and broadcasts it.

Step 4: A node w € N,, overhearing the change of marker
of u, with m(w) = black and r(w) = r(u) + 1 sets and
broadcasts p(w) = u to Ny. If m(w) = gray, r(w) =
r(u) — 1 and p(u) = nill, w increases b(w) by one.

Step 5: A gray node u overhearing p(w) from a black node
w with 7(u) = r(w) + 1 broadcast b(u) = b(u) — 1 to N2.
Step 6: Steps 3-5 are iterated for all black nodes in the
DS, until all gray nodes set b(v) = 0.

Step 7 (Pruning): If a black node v with f(v) > 0 does
not dominate at least one gray, it sets m(v) = gray.

Step 8: Run Stage 3 of Algorithm 5 until V is partitioned.

v = arg max {
uez b

With the termination of Algorithm 6, the set of black
nodes forms a SS-CDS. To ensure that the shortest paths
to the sink are included, the sink is chosen as the leader
in the DS generation. Moreover, a black node v with hop-
count to the sink |p(v, s)| can only be dominated by a
gray node with hop-count of |p(v, s)|—1 (Steps 2 and 3 of
Algorithm 6). After Step 6, all black nodes are dominated,
and are connected to the sink via the shortest path. The
application of Algorithm 6 on the topology of Fig. 5(a)
results in the SS-MCDS shown in Fig. 6.

5.1.3 Message Complexity Analysis

In this section, we analyze the message complexity for
partitioning the WSN to MCDS and SS-MCDSs (algo-
rithms 5 and 6, respectively).

Proposition 4: The message complexity for partitioning
the WSN to MCDSs using Algorithm 5 is O(63,.|V]).
Partitioning the WSN to SS-MCDSs (Algorithm 6) yields
the same complexity.

Proof: The proof is provided in Appendix D. O

We observe that algorithms 5 and 6 have linear mes-
sage complexity to the size of the WSN. The network
partition overhead is of the same order as the recurring
overhead for normalizing traffic patterns. The WSN has
to transmit |V| bogus messages periodically to normalize
the traffic patterns at each sensor, whereas the WSN
partition to subgraphs has to be applied only once.
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5.1.4 Privacy Analysis

In this section, we analyze the privacy achieved by the
MCDS partition. This analysis is performed assuming
that the adversary is fully aware of the application
of the MCDS partition, the MCDS rotation, and the
normalization of the traffic in active sensors. Let an event
U occur at time ¢(¥) € W and be reported by a sensor
v € D; who is located at ¢,,.

Source location and occurrence time privacy: To
report ¥, sensor v replaces dummy packets with real
ones, while maintaining its transmission schedule. Note
that real packets are indistinguishable from dummy ones
due to the application of per-hop packet re-encryption.
Downstream sensors receiving v’s report continue to for-
ward it by substituting dummy packets with real ones.
By applying Algorithm 1, the eavesdropper can reduce
the locations of the dummy transmissions to location ap-
proximation areas of the sensors in D;. However, events
cannot be meaningfully distinguished by the application
of Algorithm 2. Moreover, the set of candidate sources
cannot be reduced below the set of sensors in D;.

The partition of the observation set O(1) to disjoint
sets V1,Ys, ... according to Algorithm 2 depends on the
selection of the bound functions 5, and 3. Selecting
a small upper bound to model the immediate relay of
real packets practically divides O(W) to disjoint sets
containing one or very few tags. Every sensor transmis-
sion in O(W) is assumed to be a distinct event, thus
hiding the source location and occurrence time of the
real event V. If the adversary loosens the upper bound
to account for the traffic normalization applied by the
CDS sensors, O(W) is divided to few sets V1, Vs, ... with
large cardinality, which are mapped to events ¥y, ¥y, .. ..
The adversary cannot identify which set contains the real
event. Moreover, the source location and time occurrence
of the first tag in the set that contains ¢(¥), is uncorre-
lated to t(), but depends on the random transmission
times of each sensor. We note that the adversary could
apply other statistical analysis methods, such as those
reported in [20], [23]. These methods fail to detect ¥,
since the transmission patterns of sensors in D; do not
change when real traffic is introduced.

Sink location privacy: After all CDSs have been ac-
tive, the adversary can apply Algorithm 3 to approxi-
mate the topology of each D; and obtain an estimate V' of
V. When V is partitioned to MCDSs, the MCDS structure
is unrelated to the location of the sink and hence, the
sink location privacy is protected. When V is partitioned
to SS-MCDSs, the adversary can take advantage of the
shortest-path property and localize the sink. This can be
achieved by Algorithm 7. Let, p*(u, v) and p(u,v) be the
shortest path between u and v in D; and V), respectively.

Algorithm 7: Sink location inference

Step 1: For each u € D;, obtain paths p(u,v) and p*(u, v)
to each v € D;. Obtain the cumulative path difference as

AL =0 ()] = [p(u,v)]

veD;

Step 2: Repeat Step 1 for each D;, and calculate the
average cumulative path difference as,

1 i
A= g 2

ueD;

Step 3: Identify the sink as i = argmin _y, A,.

=Y

The intuition behind Algorithm 7 is to exhaustively
test every u € V as a candidate sink by computing the
average cumulative path difference A,,. A low difference
indicates that u can be reached by all nodes in the D;’s
it belongs to via shortest paths. Since each SS-MCDS is
constructed to contain the shortest paths to the sink, the
sensor [i with the lowest score over all the sets in the
partition is considered to be the sink. Thus, the sink
location privacy distance is the average distance between
£(1) and £(). The location of the sink can be hidden by
selecting a sensor near the sink to serve as the unique
destination of the SS-MCDS. The location of the fake sink
can be selected to satisfy any desired privacy distance.

5.1.5 Privacy and Retransmissions due to Packet Loss

In realistic conditions, packets could be corrupted due to
fading or noise, leading to retransmissions. If only real
packets are retransmitted, the privacy of events could
be breached. To remedy the effect of retransmissions on
privacy, we adopt an implicit acknowledgment scheme.
Assuming that a communication link between v and
u is bidirectional, when v forwards a packet p to wu,
sensor v can receive an implicit acknowledgement when
u forwards the real packet p downstream. If v does
not overhear the transmission of p by u (because it got
corrupted by the channel), it repeats the transmission
of p by following its normalized transmission schedule.
For scheme correctness, the sink must transmit the real
packet it received to acknowledge it to the last relay.

5.2 Transmission Coordination

As we showed in Proposition 1, when sensors transmit
in an uncoordinated fashion, the forwarding delay for
reporting a real event can increase significantly. This is
because a downstream sensor may transit earlier than
an upstream one on a given interval. To reduce the for-
warding delay we schedule sensors to transmit relative
to their depth in the CDS tree, when the tree is assumed
to be rooted at the sink. For an interval T, if downstream
nodes are scheduled to transmit after upstream ones, a
real transmission is guaranteed to reach the sink within
T. However, this simple scheme reveals the sink location
due to the use of the sink as the tree root. To preserve
the sink location privacy, we propose the direction-free
assignment scheme (DFAS) that guarantees the traversal
of a minimum number of hops per T', while hiding the
traffic directionality and the sink location.
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Fig. 7: DFAS assignment for two subpaths (h = 3,x = 1).

5.2.1 Direction-Free Assignment Scheme (DFAS)

Consider a CDS D;. We first divide D; into several
subpaths. Let h be a control parameter of the subpath
length and x a control factor of the packet rate of
each node. Our algorithm uses h and ~ to compute the
transmission intervals for each node in D;.

Algorithm 8: Direction-Free Assignment Scheme (DFAS)

Step 1: Epoch W that D; remains active is divided into
sub-epochs I, Is,...,I;xs, where S = 4h — 4.

Step 2: Randomly select a node p’ as the pseudo-sink.
Step 3: A node v is labeled with,

Ja+1, if g<h

| 2n—q+1, ifg>h

where ¢ = mod (|p(v, 1')|,2h — 2).

Step 4: If id, = 1, h, node v with id, transmits at random
in sub-epochs

id,

Lid,+qs; I2h+id,—2+4S,
if 2 <id, < h —1 in transmits in subepochs

Lid,+q5,> Ioh—idy +q5> 12h+id, —2+4qS> Lah—id, —244S-

In DFAS, we have assumed that » > 1. If h = 1, the
transmission assignment degenerates to uncoordinated
transmissions within W. To demonstrate the operation
of DFAS, consider the example of Fig. 7 where h = 3
and x = 1. In Step 1, epoch W is divided into 8 sub-
epochs. In Step 2, v; is selected as the pseudo-sink. In
Step 3, we label the network as a tree rooted at v;, and
obtain id,, = 1, id,, = 2, etc. In Step 4, sensors are
assigned to transmit at random within the designated
sub-epochs, according to their ids. Sensors with ids 1
and 3 transmit two packets per epoch, while all other
sensors transmit four packets per epoch. As shown in the
privacy analysis, the symmetry in this assignment hides
the traffic direction. We now show that DFAS guarantees
2h relay operations per any (4h — 4) sub-epochs.

Proposition 5: In DFAS, a packet is guaranteed to be
forwarded 2h hops per (4h —4) sub-epochs, irrespective
of the flow direction and the origin sensor.

Proof: The proof is provided in Appendix E. O

5.2.2 Privacy Analysis

Assume event U’s occurrence at t(¥) € W, while CDS
D; is active. Let ¥ be sensed by v € D; located at ¢,,.
Source location and occurrence time privacy: The
DFAS coordination is applied irrespective of the oc-
currence of an event. Sensor v and all sensors down-
stream to the sink, will replace the dummy transmissions

[ Y2
O 1,

o i™ epoch |i+lst epoch| | ---
: —

i transition zone
()

Fig. 8: (a) The MCFS operation, (b) the transition zone
between epochs.

scheduled at different sub-epochs with real packets.
Hence, the occurrence time of V¥ is concealed. Moreover,
DFAS maintains the same source location privacy as the
uncoordinated case. Without an estimate of t(), the
adversary cannot localize v.

Sink location privacy: Assume that the adversary
observes traffic during 4h — 4 sub-epochs of a single in-
terval (x = 1). According to the transmission assignment
of DFAS, nodes transmit either 2 or 4 packets within
this interval. The packet rate of each node could by
used to identify the node positions within subpaths and
consequently, the labeling of DFAS. For instance, in Fig.
7, the adversary intercepts two transmissions from vy,
four transmissions from vy, two from vs3, and so on. He
can infer that » = 3 and discover the subpath labeling.
The subpath labeling reduces the candidate nodes that
could have been used as the pseudo-sink to nodes with
id = 1 or id = h. However, the sink location remains
hidden due to the random selection of the pseudo-sink.

We emphasize that the coordination imposed by DFAS
conceals the traffic direction. Consider the transmission
assignment shown in Fig. 7. Without loss of generality,
assume that a packet m is relayed by v; in sub-epoch
I5, vo in Ig, and wvg in I;. However, the transmissions
intercepted during these sub-epochs could be associated
with packet relays in the opposite direction. The trans-
mission in /5 could be due to the relay of an m’ by wvs,
vy, and vy in I3, I4, and I5, respectively. Similarly, the
transmission in I7 could be due to the relay of an m’
by vs, v4, and wvs, in I5, Is, and I;, respectively. The
symmetry in the assignment of the transmission sub-
epochs over subpaths hides the traffic direction.

5.3 Routing Over Multiple CDSs

CDSs are rotated periodically per epoch to allow all
sensors report events to the sink. A real packet m that
originated from v € D;, may be in transit while another
CDS D; becomes active. The CDS property guarantees
that at least one node in D; would overhear the last
relay of m by a node in D;. We develop a simple routing
scheme to forward packets over multiple CDSs. Here we
assume that D; is active during epoch W}, and D; in the
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next epoch Wi ;. The steps of our scheme are as follows.

Algorithm 9: Multiple CDS Forwarding Scheme (MCFS)

Step 1: A real packet m originating from v € D; at epoch
Wy, is forwarded to p via the shortest path p(v, ) in D;.
Step 2: Any u € D; (next active CDS) overhearing m's
transmission during W}’s last sub-epoch (i.e., sub-epoch
I:xs), forwards m to the sink when D; becomes active
in Wi41. Nodes in D; discard any duplicates of m.

The MCFS operation is depicted in Fig. 8(a). Sensor
vy € Dp sends a packet m to the sink during epoch
Wi, using D;. The CDS is rotated to D, while m is in
transit. Sensor v is the last one to transmit m in W.
Sensors v; and vg overhear vs’s transmission. The relay
of m is continued by v7; and vg during W11, using D.
The duplicate packet forwarded by vy is discarded at vs.
Packet m is delivered to the sink during D,.

The MCFS operation impacts the end-to-end delay for
delivering a report to the sink in two ways. First, it
introduces a buffering delay until a CDS that contains the
source is activated. This delay depends on the number
of CDSs and the frequency of appearance of the source
to CDSs. Second, it may increase the forwarding delay.
This is because a packet may be forwarded to the sink
via multiple CDSs. We analyze the two delays with the
following propositions.

Proposition 6: Let a sensor v belong to f(v) > 1 CDSs.
Suppose that an event U is detected by v at time ¢(7),
where ¢(¥) is uniformly distributed over z epochs. The
delay until a CDS containing v becomes active is:

1) dmin = 0 epochs.

2) dmax = z — f(v) epochs.

3) doye = ZZZ{(”) k x % epochs.

Proof: The proof is provided in Appendix F. O

Proposition 7: The number of hops traversed by a real
packet m originating from v until it reaches the sink 4
is upper-bounded by |p(v, 1)| + 2rot, where |p(v, 1)| is
the shortest path length between v and ;1 and rot is the
number of CDS rotations until m reaches .

Proof: The proof is provided in Appendix G. O

5.3.1 Synchronization of CDS Rotations

The MCEFS is a coordinated action which requires
network-wide synchronization to a common time ref-
erence. The problem of time synchronization in WSNs
has been extensively studied (e.g., [1], [26]). Given the
rich literature in this domain, the specific method used
for maintaining synchronization is beyond the scope of
the present work. We assume that synchronization is
maintained for purposes that extend beyond the privacy
of contextual information including the implementation
of well-known time-slotted protocols at the MAC layer
and temporal analysis of sensor data at the sink.

For a maximum synchronization error At, the syn-
chronous sensor activation at different epochs can be
ensured by incorporating a “transition zone”. The con-
cept of a transition zone is demonstrated in Fig. 8(b).

Two consecutive epochs ¢ and i + 1 are separated by
a transition zone with a duration equal to At. Sensors
that were active during the i'" epoch remain active
(transmitting or receiving) during the i‘" transition zone,
whereas sensors of the following epoch are activated
after the i transition zone has expired. The introduction
of a transition zone ensures the following property.

Let the earliest sensor transition to epoch ¢ at ¢;. Let
each epoch last for T'. Because the synchronization error
is at most At, any sensor active during the i’ epoch will
transmit before ¢; +7+ At, which is the expiration time
of the it" transition zone. Moreover, no sensor of the
i+ 1t epoch will be active before the i!" transition zone
is expired. This guarantees the synchronous activation
of the sensors that belong to the same CDS.

6 PRIVACY AND PERFORMANCE EVALUATION

In this section, we compare our traffic normalization
method with a representative set of prior works. We
show that the MCDS approach achieves the same pri-
vacy level as a global traffic normalization, but at
lower cost. Moreover, we show that techniques designed
to thwart local eavesdroppers leak information under
global eavesdroppers.

6.1

We applied the traffic analysis algorithms outlined in
Section 4 and measured the privacy distance achieved
for different privacy types (source location, sink location,
and event occurrence time). We compared our method,
referred to as “MCDS”, with (a) a base method that
does not protect contextual information privacy, (b) the
“STaR” scheme [15], (c) “phantom flooding” [22], and (d)
the global traffic normalization method in [20].

Simulation setup: We randomly deployed 250 sensors
within a 450m x450m area. We also deployed an eaves-
dropping network on a square grid to achieve homoge-
neous coverage of the WSN. We varied the square grid
size a and the corresponding number of deployed eaves-
droppers. The sensor transmission range and the eaves-
dropper reception range were set to 50m. We abstracted
the PHY and MAC layers into a simple per-hop delay
model, which consists of a fixed component representing
the transmission and propagation delays at the PHY
layer, and the contention delay at the MAC layer. This
delay was set to 166ms for a packet transmission of 1280
bytes, according to the IEEE 802.15.4 protocol evaluation
presented in [8]. No retransmissions due to collisions
or impairments of the wireless medium were consid-
ered. This simple model was preferred to eliminate
the randomness in different system realizations due to
contention. Moreover, this model closely matches event-
driven networks, which operate under low-contention
conditions due to the sparsity of transmissions.

Events were generated at randomly selected locations
in the WSNs. The inter-event time followed a uniform
distribution in the [0, 60]s interval. Events were reported

Privacy Evaluation
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Fig. 9: Inferred sensor activity areas for the following schemes: (a) no protection, (c) STaR, (b) phantom flooding,
(d) global norm., (e) MCDS. Privacy distance for: (f) source privacy, (g) sink privacy, and (h) temporal privacy.

by the closest active sensor to the event location. In the
MCDS scheme, events were reported by the first active
sensor that detected the event. The event is reported by
transmitting one packet of 1,280 bytes to the sink.

Visual Representation of Privacy: We visualized the
event privacy achieved by each scheme by representing
the sensors’ true locations as points and the approxi-
mated area estimated via traffic analysis as a shaded area
around each point. We simulated two events and shaded
the detected transmission activity of each event with the
same color. Moreover, the positions of various critical
nodes such as the source, the sink, and intermediate
nodes are highlighted, if identified by the adversary.

Fig. 9(a) shows the inferred sensor activity for the base
scheme. The adversary accurately localized the sources
of two events and the paths to the sink. The sink location
was also identified. Fig. 9(b) shows the inferred sensor
activity for the STaR scheme. Despite the use of an
intermediate node as a decoy, the global view of the
adversary allowed him to pinpoint the source and sink
locations, and the path to the sink. Moreover, the two
events were clearly distinguishable. Fig. 9(c) shows the
transmission activity inferred for phantom flooding. For
this scheme, the adversary pinpointed the source loca-
tion based on the earliest transmission time. Also, the
adversary reconstructed the path from the source to the
fake source. However, the sink location was protected
by the application of the probabilistic flooding. Finally,
Figs. 9(d) and 9(e) show the sensor activity inferred
when the global norm. and MCDS methods are applied,
respectively. Both methods successfully hid contextual
information. However, in MCDS, fewer sensors were
active. In Figs. 9(c), 9(d), and 9(e), we only show results
for a single event to preserve visual clarity.

Source Location Privacy: In Fig. 9(f), we show the
privacy distance for the source location as a function

of the grid square size, normalized to the eavesdrop-
ping reception range (50m). Confidence intervals of 95%
are also shown. We observe that the base, STaR, and
phantom flooding schemes, the adversary can identify
the source within one communication range (II < 1), for
sufficiently dense eavesdropper deployments (o < 80).
On the other hand, the global norm. and MCDS schemes
maintain a relatively constant privacy distance that is 5-6
times larger than the eavesdropping reception range. The
larger variance observed is due to the difference in the
Euclidean distance between the random event locations
and all dummy traffic sources.

Sink Location Privacy: In Fig. 9(g), we show the
privacy distance for the sink location. In this figure,
StaR has the same performance with the base method
and MCDS has the same performance with the global
norm. method. Therefore, only one curve is used to
represent each pair of methods. We observe that for low
«, the STaR method is unable to hide the sink location.
However, for large o (small number of eavesdroppers),
the sink privacy increases considerably. This is because
the adversary loses trace of the path from the source
to the sink, when some poorly eavesdropped area is
traversed. The rest of the methods achieve high sink
privacy. The privacy in phantom flooding is slightly
lower than MCDS and global norm., as the path between
the source and the intermediate fake source before the
application of probabilistic flooding is identifiable. Fi-
nally, MCDS achieves the same privacy levels as global
norm., despite the fewer active sensors in MCDS.

Temporal Privacy: In Fig. 9(h), we show the temporal
privacy distance for the base, phantom flooding, and
STaR schemes (results for global norm. and MCDS are
not included because the event occurrence time is not
identifiable in these schemes). The event occurrence time
was estimated using Algorithm 4. We normalized the
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temporal privacy with respect to the end-to-end delay
of reporting the event of interest. For base, STaR, and
phantom flooding, the privacy distance takes values
between 0.8 and 2, which shows that the accuracy of
the adversary’s estimations is in the order of the end-
to-end delay. Phantom flooding exhibits larger variance
compared to the other schemes, due to the probabilistic
nature of the flooding operation.

6.2 Generation of a CDS Partition

In these experiments, we studied the performance of
Algorithms 5 and 6 in partitioning the sensors set V to
multiple CDSs. We deployed several WSNs at random
and varied the average node degree ¢ by increasing the
sensor density. We ran Algorithms 5 and 6 to obtain
the MCDS and SS-MCDS partition. We evaluated the
following metrics: (a) the average fraction of sensors that
belong to a CDS (CDS size), (b) the number of CDSs
needed to span V, and (c) the probability mass function
(pmf) of the appearance frequency f(v) to a CDS.
Figure 10(a) shows the average size of the CDSs that
span V, as a function of J. Confidence intervals of 95%
are also shown. The CDS size directly relates to the
energy savings compared to the global norm. method,
which requires all sensors to be dummy traffic sources
[20]. We observe that the fraction of active sensors de-
creases with J, which indicates higher energy savings.
Furthermore, the size difference between MCDSs and SS-
MCDSs is close to 2%, for all values of §. This indicates
that the SS-MDSS partition optimizes the paths to the
sink without a significant penalty on the CDS size. Figure
10(b) shows the average number of CDSs needed to
span V, as a function of ¢. This value is related the
delay until a CDS containing a sensor with a real packet

for transmission becomes active. We observe a linear
increase in the number of CDSs with §. Also note that the
total number of SS-MCDSs required to span V is slightly
higher than the number of MCDSs. This difference is
attributed to the additional requirement of including
shortest paths to the sink for the SS-MCDS case.

In Figs. 10(c) and 10(d), we show the empirical pmf
for the appearance frequency f(v) when constructing
MCDSs and SS-MCDSs, respectively. The f(v) represents
the “quality” of the partition (ideally, f(v) = 1,Yv € V).
For both partitions types, more that 50% of sensors are
part of one or two CDSs, while for 95% of the sensors,
f(v) < 5. This indicates that Algorithm 6 favors the
creation of disjoint CDSs to a large extend, thus reducing
the per-sensor dummy traffic overhead.

6.3 Communication and Delay Overheads

In the last set of experiments, we studied the communi-
cation overhead and end-to-end delay for delivering real
packets to the sink. We compared MCDS with the global
norm. method, because only those two achieve the same
privacy. In our experiments, each CDS remained active
for one epoch. To reduce the event buffering delay due
to CDS rotation, an event was reported by all sensors
that sensed it. To provide a fair comparison, we selected
a dummy packet rate in the global norm. method that
achieves the same end-to-end delay as in MCDS.
Figure 11 (a) shows the average communication over-
head as a function of . The overhead is normalized
to the traffic volume introduced by the global norm.
method. We observe that the SS-MCDS introduces an
overhead of 120% when 6 = 10, while for the MCDS,
the overhead drops to 90%. This difference is primarily
due to the delay introduced by the CDS rotation. As a
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partition to SS-MCDSs requires a larger number of SS-
MCDSs to span V, a sensor that has detected an event
has to wait longer until its CDS becomes active. The
communication overhead is drastically reduced with the
increase of ¢. This is due to the fact that under denser
sensor deployments, more sensors can detect an event.
These sensors likely belong to different CDSs because
they are within the same neighborhood. Therefore, the
buffering delay is reduced.

In Fig. 11(b), we show the average end-to-end de-
lay achieved by DFAS as a function of the subpath
size h. The delay is normalized to the delay incurred
when transmissions are uncoordinated. To provide a fair
comparison, each scheme was restricted to transmit the
same number of dummy packets. We considered events
reported by sensors located 7 hops away from the sink
(which is the highest hop-count in the network). As
expected, the delay reduces with the increase of h, as a
larger number of hops is traversed per epoch. Finally, in
Fig. 11(c) we present the average path expansion factor
for the MCDS method relative to the SS-MCDS method,
as a function of 4. The expansion factor is defined as the
ratio between the path length to the sink, when MCDSs
are constructed, relative to the shortest path. We observe
that MCDS produces slightly longer routing paths to the
sink (in the order of 30% when § = 10.) However, this
difference reduces with § due to the availability of more
routes with short paths to the sink.

7 CONCLUSIONS

We addressed the problem of contextual information
privacy in WSNs under a global eavesdropper. We pre-
sented a general traffic analysis method for collectively
processing the packet interception times and eavesdrop-
per locations at a fusion center. The method is agnostic
to the protection mechanism and can be used as a base-
line for evaluating different schemes. To mitigate global
eavesdropping, we proposed traffic normalization meth-
ods that regulate the sensor traffic patterns of a subset of
sensors that form MCDSs. We developed two algorithms
for partitioning the WSN to MCDSs and SS-MCDSs and
evaluated their performance via simulations. Compared
to prior methods capable of protecting against a global
eavesdropper, we showed that limiting the dummy traf-
fic transmissions to MCDS nodes, reduces the communi-
cation overhead due to traffic normalization. We further
proposed a loose transmission coordination scheme that
reduces the end-to-end delay for reporting events.
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