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Abstract—Coordination of network functions in wireless networks requires frequent exchange of control messages among participating
nodes. Typically, such messages are transmitted over a universally known communication channel referred to as the control channel. Due to its
critical role, this channel can become a prime target of Denial-of-Service (DoS) attacks. In this article, we address the problem of preventing
control-channel DoS attacks manifested in the form of jamming. We consider a sophisticated adversary who has knowledge of the protocol
specifics and of the cryptographic quantities used to secure network operations. This type of adversary cannot be prevented by anti-jamming
techniques that rely on shared secrets, such as spread spectrum. We propose new security metrics to quantify the ability of the adversary to
deny access to the control channel, and introduce a randomized distributed scheme that allows nodes to establish and maintain the control
channel in the presence of the jammer. Our method is applicable to networks with static or dynamically allocated spectrum. Furthermore, we
propose two algorithms for unique identification of the set of compromised nodes, one for independently acting nodes and one for colluding
nodes. Detailed theoretical evaluation of the security metrics and extensive simulation results are provided to demonstrate the efficiency of
our methods in mitigating jamming and identifying compromised nodes.

Index Terms—Jamming, Denial-of-Service, Control channel, Ad hoc networks, Cognitive radio networks.

1 INTRODUCTION
Organizing a collection of nodes into a wireless network requires
cooperative implementation of critical network functions such
as neighbor discovery, channel access and assignment, routing,
and time synchronization. These functions are coordinated by
exchanging messages on a broadcast channel, known as the
control channel. In most network architectures, including mobile
ad hoc, vehicular, sensor, cellular, mesh, and cognitive radio
networks (CRNs), the location1 of the control channel, determined
by its frequency band, time slot, or spreading code, is known a
priori to all nodes participating in the network [2], [22].

From a security standpoint, operating over a globally known
control channel constitutes a single point of failure. Networks
deployed in hostile environments are susceptible to Denial-of-
Service (DoS) attacks by adversaries targeting the functionality
of the control channel [6], [9], [25]. If the adversary is successful,
network service can be denied even if other available frequency
bands remain operational. One of the most effective ways for
denying access to the control channel is by jamming it. In this
attack, the adversary interferes with the frequency band(s) used
for control by transmitting a continuous jamming signal [19], or
several short jamming pulses [16].

Typically, jamming attacks have been analyzed and addressed
as a physical-layer vulnerability. Conventional anti-jamming tech-
niques rely extensively on spread spectrum (SS) [19]. These tech-
niques provide bit-level protection by spreading bits according
to a secret PN code, known only to the communicating parties.
An adversary unaware of this code has to transmit with a power
which is several orders of magnitude higher compared to the SS
transmission, in order to corrupt a SS signal. However, in packet-
radio networks, corrupting a few more bits than the correction
capability of the error correcting code (ECC) (about 13% of the

A preliminary version of this paper was presented at the ACM WiSec 2009
Conference (full paper), March 2009.

1. In this work, we define the location of the control channel as a frequency
band used to broadcast messages for coordinating network functions.

packet length for WLANs [16]) is sufficient to force the dropping
of a data packet. Hence, the adversary need only stay active
for a fraction of the time required for a packet transmission.
Moreover, targeting the control channel, which typically operates
at a low transmission rate, significantly reduces the adversary’s
effort. In fact, it was shown that the power required to perform
a DoS attack in GSM networks is reduced by several orders of
magnitude when the attack targets the control channel [6], [25].
Moreover, potential disclosure of cryptographic secrets (e.g., PN
codes) by compromised nodes further reduces the adversary’s
effort. Note that because control information is broadcasted, PN
codes must be shared by all intended receivers. The compromise
of a single receiver leaves the network vulnerable to low-effort
jamming attacks [6], [16], [25], [26]. In this article, we address
the problem of resisting control channel jamming in the presence
of compromised nodes.

Our Contributions–We consider a sophisticated adversary
who exploits knowledge of protocol specifications along with
cryptographic secrets to efficiently jam the control channel. This
channel can be used by any layer in the protocol stack to broadcast
control traffic, which could include coordination information
needed for protocol operation in upper layers. To quantify the
adversary’s ability to deny access to the control channel, new
security metrics are defined. A randomized distributed channel
establishment and maintenance scheme is developed to allow
nodes to establish a new control channel using frequency hopping.
Under our scheme, network nodes are able to temporarily access
a control channel until the jammer is removed from the network.
Our method differs from classic frequency hopping in that no
two nodes share the same hopping sequence. This allows for
unique identification of compromised nodes by nearby ones. Our
scheme is suitable for networks with static or dynamic spectrum
assignment (e.g., CRNs). For the latter, we propose a modification
of the original scheme to take into account the dynamic nature of
channel availability in time and space. Assuming perfect random
number generators, we analytically evaluate the proposed anti-
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jamming metrics. We verify our analytic results via extensive
simulations. Both static spectrum and dynamic spectrum networks
are considered and simulated.

The remainder of this article is organized as follows. In Section
2, we state the network and adversarial models, and propose
new security metrics for evaluating control channel jamming.
Section 3 describes our proposed control channel architecture.
In Section 4, we present our randomized distributed scheme
for maintaining control communications when the network is
under attack. Section 5 describes the process of identifying
compromised nodes. Analytical performance evaluation of our
scheme is presented in Section 6. In Section 7, we present related
work and in Section 8, we summarize our contributions.

2 MODEL ASSUMPTIONS AND METRICS

Network Model–We consider a wireless ad hoc network. In the
case of a static spectrum assignment, the network is assumed to
operate over K orthogonal frequency bands. We use the terms
frequency, frequency channel, or simply channel interchangeably
to denote a separate frequency band. In the case of dynamic
spectrum networks, the number of idle channels at time t, denoted
by K(t), varies according to primary radio (PR) activity. The
maximum number of idle channels is equal to K. Cognitive
radio (CR) nodes are capable of sensing the wireless medium and
determining the set of idle channels at any given time. Various
sensing methods can be used for this purpose [2].

Each node is equipped with a half-duplex transceiver. This is
typical for most wireless devices equipped with a single radio2.
We further consider a time-slotted system. Network nodes are
assumed to be capable of slowly hopping between available
frequencies bands. For simplicity, we assume that one frequency
hop can occur per time slot. Several messages may be exchanged
during each slot. We assume that prior trust has been established
between network nodes. Neighboring nodes share pairwise sym-
metric keys that can be used for secure communication and joint
secret generation.

Adversarial Model–The goal of the adversary is to drop
packets that are transmitted over the control channel. To do so, the
adversary deliberately interferes with transmissions on selected
frequency bands within a communication range Rmax. Messages
received by any node that is within the jamming range and at
the jammed frequency band are assumed to be irrecoverably
corrupted. Network nodes are assumed to be capable of detecting
jamming attacks if they are within distance Rmax from the
jammer and are tuned to the jammed frequency band. Several
methods are available for jamming detection [29], and any of
them can be used for our purposes. We further assume that
the adversary can physically compromise network devices and
recover the content of their memory, including cryptographic
secrets such as PN codes. He is also capable of hopping at the
same rate as normal network nodes, thus jamming one channel

2. Our schemes can benefit from a full-duplex transceiver design by exploiting
concurrent transmissions/receptions of control information in multiple frequency
bands, at the expense of increased hardware complexity. We leave the investi-
gation of the properties and performance of our methods under a full-duplex
communication model as future work.

per time slot (slow hopping jammer). This model is suitable when
considering that the jammer is aware of the PN codes used for
broadcasting. Therefore, he does not need to hop at a faster rate
to jam the control channel. Note that with dedicated hardware,
the jammer may be able to hop at a much higher rate than that
of regular nodes. However, the jammer’s hopping rate is limited
by the time that he has to remain on a particular band in order
to corrupt a sufficient number of bits from the targeted packet(s).
Taking into account the interleaving function at the physical layer,
this time can represent a significant portion of the slot duration
[16].

Anti-Jamming Metrics–Numerous metrics have been pro-
posed in the literature for evaluating jamming resilience. Tra-
ditional anti-jamming metrics such as the jamming-to-noise ratio
and the jamming gain are mostly relevant under an external threat
model. These metrics capture the amount of power needed by the
adversary in order to interfere with legitimate transmissions at
the physical layer [1], [16]. In our context, an adversary who is
aware of a compromised PN code can follow that code in order
to jam the control channel without significantly increasing his
transmission power relative to the transmitted signal.

MAC layer metrics, such as the packet send ratio (PSR) and
packet delivery ratio (PDR), were introduced by Xu et al. [29].
These metrics are useful for detecting a jamming attack, but
are not reflective of the ability of our scheme in resuming the
control channel operation. Our scheme aims at identifying the set
of compromised nodes. This identification is critical for the re-
establishment of the control channel. For this purpose, we define
the following security metrics.

Definition 1: Evasion Entropy Ei–Let Ii be a random variable
that denotes the frequency of the control channel during slot i.
We define the evasion entropy as:

Ei = H(Ii|Ii−1, Ii−2, . . . I0)

where H(X|Y ) is the conditional entropy of the random variable
X given the random variable Y :

H(X|Y )
△
= −

∑
y

∑
x

Pr[y] Pr[x|y] log2 Pr[x|y].

Here, Pr[y] = Pr[Y = y] and Pr[x|y] = Pr[X = x|Y = y].
The evasion entropy measures the uncertainty in the control

channel location, given all previously observed locations and any
internal knowledge due to node compromise.

Definition 2: Evasion Delay D–The evasion delay is defined
as the time between the successful jamming of the control channel
and the re-establishment of a new one.

Definition 3: Evasion Ratio ER–The evasion ratio is defined
as the fraction of time that the control channel is available for
communication, in the presence of the jammer.

3 DESIGN MOTIVATION

In this section, we motivate our approach for establishing and
maintaining the control channel. Our method is based on the
observation that the scope of control messages is typically con-
fined to the range of the broadcaster (e.g., RTS/CTS messages).
For multi-hop networks, broadcasted control messages can be
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Fig. 1: (a) The adversary blocks all control messages within range Rmax by jamming a single frequency band, (b) the control channel
is located at different channels within each cluster. The impact of the jammer is now confined to clusters within Rmax that use the
jammed channel.

relayed on the same or on a separate frequency band. Allocat-
ing different control channels to different neighborhoods within
the same collision domain can potentially increase the control-
channel throughput due to the reduction in interference between
such neighborhoods. Moreover, allocating one unique channel
for control has the following significant disadvantages: (a) a
long-range transmission can jam the control channel for multiple
neighborhoods, (b) the control channel re-establishment process
has to be coordinated network-wide, and (c) the compromise of
a single node reveals any shared PN codes used for broadcasting.

The impact of long-range jamming attacks can be significantly
reduced by varying the control channel in space and time. Such
a design also reduces the delay and communication overhead of
the control channel re-establishment process, because it requires
only local coordination. To mitigate the impact of jamming,
we adopt a cluster-based architecture, where the network is
partitioned into a set of clusters. Each cluster establishes and
dynamically maintains its own control channel. In this design,
it is sufficient to ensure that nodes can receive broadcast control
messages from members of their own cluster, and that nodes at the
boundaries of multiple clusters are aware of the control channels
associated with these clusters. The control-channel establishment
and maintenance process is facilitated by a clusterhead (CH) node
within each cluster. CHs are regular nodes that are temporarily
assigned with the responsibility of mitigating jamming, and can
be periodically rotated. Several methods are readily available for
organizing a wireless network into clusters and electing CHs [31].

In Fig. 1(a), we show an implementation of the control channel
using one frequency. All nodes within the jammer’s range are
denied access to the control channel. In Fig. 1(b), we show
a clustered approach where each CH is responsible for the
establishment and maintenance of a separate control channel
within its cluster. The impact of the jammer is now confined
to clusters within Rmax that use the jammed frequency.

4 CONTROL CHANNEL IMPLEMENTATION

Consider a given cluster, where each node is within the range
of the CH. Suppose the current control channel is jammed by an
adversary. The main idea behind our scheme is to have each node
in the cluster hop between channels in a pseudo-random fashion,
following a unique hopping sequence not known to other nodes.

If the jammer captures the hopping sequence of a compromised
node, then by design this node can be uniquely identified. After
identification, the CH updates the hopping sequences of all nodes
in the cluster except the compromised one. After this update,
the effectiveness of a jammer who exploits knowledge from a
compromised node becomes equivalent to the effectiveness of
a jammer who hops randomly between channels. Note that our
method is not a permanent solution for the control channel allo-
cation, nor can it be used permanently for data communications
due to its high communication overhead and delay. Rather, our
scheme temporarily maintains control communication until the
jammer and any compromised nodes are identified.

The hopping sequences assigned to various nodes are designed
to overlap at certain time slots, which represent the control
channel. These slots are kept secret. Given the uncertainty in the
control channel location, control transmissions must be repeated
in several slots to (probabilistically) ensure reception by the
intended parties. Our scheme consists of five phases: (a) hop-
ping sequence generation, (b) hopping sequence assignment, (c)
control channel access, (d) compromised node identification, and
(e) hopping sequence update. For dynamic spectrum networks,
an intermediate step is applied to adjust the hopping sequences
according to the current channel availability. We now describe
each of the above phases.

4.1 Hopping Sequence Generation

By design, the hopping sequences assigned to different cluster
members overlap only in a pre-defined number of slots, which
are used to implement a broadcast control channel. In order to
protect the secrecy of the control channel, the hopping sequences
must satisfy the following properties: (a) high evasion entropy;
knowledge of previous hops does not reveal any information about
future ones, and (b) high minimum Hamming distance; when
interpreted as codewords, any two sequences should have a high
Hamming distance so that a compromised node can be identified.

Suppose that the cluster consists of n nodes plus the CH, and
let the set of available channels be {1, . . . ,K}. To construct n
hopping sequences of length L+M, where M denotes the number
of slots implementing the control channel, the CH executes the
following steps:

Step 1: Generate n random sequences sj , 1 ≤ j ≤ n, each of
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s1:  1,  2,  5,  3,  8,  2,  5,  2,  4,   6,    7,    1

s2:  2,  4,  3,  1,  1,  2,  6,  2,  3,   4,    7,    5

s3:  7,  5,  8,  2,  3,  4,  8,  1,  5,   2,    6,    7

v: 2,  5,  15,  9,  6,  c: f2,  f5,  f7,  f4,  f8

slot:  1,  2, 3,  4,  5,   6, 7,   8,  9,  10,  11,  12

m1:  1,  2,  2,  5,  5,  7,  3,  8,  4,   2,   5,   2,  4,    6,   8,   7,   1

m2:  2,  2,  4,  3,  5,  7,  1,  1,  4,  5,    6,   2,  3,    4,   8,   7,   5

m3:  7,  2,  5,  8,  5,  7,  2,  3,  4,  4,    8,   1,  5,    2,   8,   6,   7

slot:  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15, 16, 17

c:        f2                  f5   f7                    f4                                                 f8

Fig. 2: Hopping sequence generation for L = 12,M = 5 and K = 8. The control-channel location vector c is interleaved with the
random sequences s1, s2, and s3 at the slot positions indicated by the M -long vector v.

length L. For each sequence sj = {sj(1), . . . , sj(L)},
we have Pr[sj(i) = k] = 1

K , where k = 1, 2, . . . ,K.
Step 2: Generate a random channel location vector c =

{c(1), . . . , c(M)}, where Pr[c(i)= k] = 1
K for i =

1, . . . ,M , and k = 1, 2, . . . ,K.
Step 3: Generate a random slot position vector v =

{v(1), . . . , v(M)}, where v(i) ∈ {1, . . . , L+M}, with
v(i) ̸= v(j), ∀i ̸= j.

Step 4: In every sequence sj , insert element c(i) before element
sj(v(i)) to generate a new sequence mj .

In Fig. 2, we show an example of the hopping sequence gen-
eration phase for three nodes, with L = 12,M = 5, and K = 8.
Here, the indexes {1, . . . , 8} correspond to eight frequency bands
{f1, . . . , f8}. In Step 1, three random sequences s1, s2, and s3 of
length L = 12 are generated, with sj(i) ∈ {1, . . . , 8}. In Step 2,
a random channel location vector c of length M = 5 is generated
with c(i) ∈ {1, . . . , 8}. This vector indicates the frequency
bands of the control channel. In Step 3, the random slot position
vector v is generated. This vector indicates the five slots where
the control channel is implemented. In Step 4, the sequences
m1,m2, and m3 are obtained based on s1, s2, s3, c and v. Note
that because the mj’s are a result of random interleaving of
random sequences, they are also random. However, the sequences
mj , 1 ≤ j ≤ n, are not mutually independent, because c is
interleaved in specific slots of all sequences. Despite this fact, it
still holds that knowledge of one sequence does not reveal any
information regarding the other. This is due to the fact that the
vector v, which indicates the slot locations where two hopping
sequences overlap by design, is not known to non-CH nodes.
Therefore, by knowing one hopping sequence mj , one cannot
predict the other sequence.

4.2 Generation for Dynamic Spectrum Networks

In dynamic spectrum networks, the set of channels available for
use varies temporally and spatially. Consider a CRN. Suppose
that the nodes are assigned hopping sequences mj’s, generated
as in Section 4.1. Denote channel availability during time slot
i by Fi = {chi(1), chi(2), . . . , chi(K(i))}, where K(i) is the
number of idle channels during slot i, K(i) ≤ K. Here, chi(j)
denotes the index of the jth idle channel, chi(j) ∈ {f1, . . . , fK}.
The set of idle channels in each time slot can be determined by
the underlying channel sensing process [2], with all nodes in a
particular cluster agreeing on the same set [10]. However, two
different clusters may have two different sets of idle channels.

To adjust mj to a hopping sequence m′
j for dynamic spectrum

networks, each cluster node executes the following steps.
Step 1: Determine the channel availability set for time slot i :

Fi ={chi(1), chi(2), . . . , chi(K(i))}.
Step 2: Map index mj(i) to index m′

j(i) = mj(i)
(mod K(i)) + 1.

Step 3: Access frequency band Fi(m
′
j(i)).

The following example illustrates the above procedure. Con-
sider three CRs that have been assigned the hopping sequences
in Fig. 2. Suppose that for slot 4, the set of idle channels
is F4 = {f2, f3, f5, f7, f8} (K(4) = 5). CR1 executes Step
2 above and computes m′

1(4) = [m1(4) (mod K4))] + 1 =
[5 (mod 5)] + 1 = 1. In Step 3, CR1 determines the next
hop to be F4(1) = f2. Similarly, CR2 determines m′

2(4) =
[m2(4) (mod K4)] + 1 = [3 (mod 5)] + 1 = 4, which denotes
the 4th channel in the idle channel list, i.e., f7. CR3 hops to
the same channel though its original index m3(4) ̸= m2(4).
Suppose now that the set of idle channels for slot 7 has changed
to F7 = {f2, f5, f6, f7} (in reality, PR activity varies at a much
slower rate compared to the scale of time slots). The CRs adjust
their sequences to the current set of idle channels. The resulting
sequences are shown in Fig. 3.

4.3 Hopping Sequence Assignment
The hopping sequences generated by the CH are assigned to
individual cluster nodes via secure pairwise communication.
Using pre-shared pairwise keys, the CH can establish pairwise
shared PN codes with the members of its cluster. Note that
the compromise of a cluster node only reveals the PN code
shared between that node and the CH, while the rest of the
pairwise PN codes remain secret. Thus, these codes can be
used for jamming-resistant pairwise communication (but not for
broadcasting of control information). The steps of the hopping
sequence assignment for a node nj are as follows:

Step 1: The CH and node nj establish a pairwise PN code (this
code can be either preloaded or generated based on a
pairwise key KCH,nj ).

Step 2: The CH provides nj with the hopping sequence mj ,
encrypted using the pairwise key KCH,nj

. Message
integrity is achieved through a message authentication
code (MAC).

Step 3: Node nj erases from its memory any information
regarding the identity of the CH.

Step 3 ensures that after PN code assignment, the identity of
the CH becomes a secret. Hence, an adversary who may later
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F4 = { f2,  f3,  f5,  f7,  f8} F7 = { f2,  f5,  f6,  f7 }

m1:   … 5,  5,  7,  3,  8,4,… 

m2:   … 3,  5,  7,  1,  1,  4,… 

m3:   … 8,  5,  7,  2,  3,  4,  … 

slot:   … 4,  5,  6,  7,  8,  9,  … 

m1:   … 1,  1,  3,  4,  1,1, … 

m2:   … 4,  1,  3,  2,  2,  1, … 

m3:   … 4,  1,  3,  3,  4,  1, … 

slot:   … 4,  5,  6,  7,  8,  9, … 

m1:  …f2,  f2,  f5,  f7,  f2,f2, …

m2:  …f7,  f2,  f5,  f5,  f5,  f2, …

m3:  …f7,  f2,  f5,  f6,  f7,  f2, …

c:              f2,   f5,             f2

slot:   … 4,   5,   6,   7,   8,  9,… 

Fig. 3: Adjusting the hopping sequences to account for dynamic channel availability.
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Fig. 4: Number of slots required for accessing at least one control
channel slot with probability p0 as a function of the ratio M

L+M .

on compromise nj cannot selectively target the compromise of
the CH. Note that once hopping sequences are assigned, cluster
nodes need not know the CH identity in order to access the control
channel. In any case, the CH can prove his role to various nodes
by using his knowledge of the PN codes that were assigned to
individual nodes during the assignment phase. Any cluster node
attempting to impersonate the CH would fail to “authenticate”
itself, because it is not aware of the PN codes originally assigned.

4.4 Control Channel Access

The hopping sequences assigned to cluster members are designed
to implement the control channel only during the slots indicated
by the random slot position vector v. To prevent an adversary
who compromises one cluster node from jamming the control
slots, we require by design that v is not known to cluster nodes.
Hence, nodes are not aware of which time slots solely belong
to the control channel. To broadcast a control message, a node
must repeat its transmission over consecutive slots. The goal here
is to ensure that a control-channel slot is accessed at least once
during this repetitive transmission. Let x denote the number of
retransmissions of a control message. An appropriate value for x
can be probabilistically computed based on the design parameters
of the hopping sequences. That is, we can tune x such that a
control-channel slot occurs with a desired probability p0. The
probability that the number of occurrences z of a control slot is
larger than one in a total of x slots is

Pr[z ≥ 1] = 1− Pr[z = 0] = 1−
(

L

L+M

)x

. (1)

Setting Pr[z ≥ 1] ≥ p0 and solving for x yields

x ≥ ⌈ log (1− p0)

logL− log (L+M)
⌉. (2)

Fig. 4 depicts x versus M
L+M for various values of p0. We

observe that for M
L+M ≥ 0.5, fewer than 5 repetitions are required

for all three values of p0. For smaller values of M
L+M , the required

number of slots x increases up to 28 slots when M
L+M = 0.1

and p0 = 0.95. The ratio M
L+M controls the tradeoff between

the efficiency of the broadcast communication and resilience to
jamming under node compromise. A higher ratio decreases the
necessary number of retransmissions for a successful broadcast,
but also increases the time needed for the identification of a
compromised PN sequence.

Note that several cluster nodes may want to broadcast a control
message during the same control slot. Although we do not specify
the MAC mechanism for coordinating access to this common
slot, well-known multiple access techniques, ranging form pure
random access to p-persistent CSMA protocols to CSMA with
virtual carrier sensing, can be employed. Broadcast control mes-
sages are not acknowledged so as to avoid an ACK implosion
situation [27]. This is in line with typical wireless protocols such
as the 802.11 family. Therefore, a transmitting node does not
know if its transmission was performed over a control-channel
slot or whether the transmission attempt was successful. For this
reason, the node must repeat such a transmission x times.

Upon the successful transmission of a broadcast control
packet on a slot that belongs to the control channel, all n-
odes are able to correctly receive that packet. Since packets
are transmitted/received in the context of a particular proto-
col/application/network function, they are accordingly passed on
to upper layers of the network stack. Note that cluster nodes may
receive multiple copies of the same control packet, because trans-
missions are repeated on multiple slots, and multiple sequences
may coincide on slots other than the control channel slots. This
replication of information is indicated by the inclusion of the
same sequence number on the copies of the same packet (e.g., at
the MAC layer header). That is, a node repeating the broadcast of
the same control packet on multiple slots, keeps all fields of the
packet identical. Hence, using the sequence number field, cluster
nodes can reject multiple copies of the same control packet.

4.5 Hopping Sequence Update
Hopping sequences need to be updated when the CH detects that
a node has been compromised. In this case, the CH is responsible
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for assigning new sequences to all uncompromised nodes. To do
so, the CH synchronizes with the PN code of each individual
node, prove his role as a CH, and assigns a new PN code. In
detail, the following steps are executed:

Step 1: The CH synchronizes with PN code mj (mj is only
known to the CH and nj).

Step 2: The CH communicates to nj a portion of mj , which
is meant to prove the CH’s knowledge of mj . This
communication is secured by the pairwise key KCH,mj .

Step 3: The CH assigns a new sequence m∗
j to nj . This

communication is secured by the pairwise key KCH,mj .
Step 4: Node nj erases all information regarding the identity

of the CH.
The hopping sequence update phase differs from the initial

hopping sequence assignment phase in the pairwise PN code
used for communication. After the initial assignment, cluster
nodes hop according to their mj’s. Hence, the CH has to
follow each mj to individually communicate with each node.
Note that the compromise of node nj does not reveal sequence
mℓ, ℓ ̸= j. Hence, the jammer cannot prevent the update of
non-compromised nodes. The case of a CH compromise, which
reveals all hopping sequences to the adversary, is addressed
through CH rotation, as detailed in Section 5.3. Once a CH
rotation has occurred, the new CH updates the hopping sequences
of all cluster nodes by following the initial hopping sequence
assignment process.

In Step 2, the CH proves his role to every cluster member that
is assigned a new sequence. This step is necessary because infor-
mation regarding the CH identity is erased after the initial hoping
sequence assignment. Note that the pairwise key shared between
the CH and a cluster node nj is not sufficient to authenticate the
role of CH. Other cluster nodes may share pairwise keys with
nj . To avoid CH impersonation, the CH exploits his knowledge
of the unique hopping sequences assigned to each node. When
updating node nj , the CH securely communicates part of the
current sequence mj (future hops) to nj . Upon reception of
a correct partial sequence, nj will accept the sequence update
performed in Step 3. After the successful assignment of m∗

j ,
node nj erases the identity of CH from its memory (nj is an
uncompromised node and hence, will conform to Step 4). Steps
1-4 have to be repeated by every legitimate node in the cluster,
leading to the isolation of the compromised node(s).

5 IDENTIFICATION OF COMPROMISED NODES

In this section, we develop algorithms for the identification of
compromised nodes. We first address the case of one compro-
mised node, and then extend the treatment to multiple ones.

5.1 Compromise of a Single Node
Suppose that one cluster member nj has been compromised. The
adversary acquires the unique hopping sequence mj assigned to
this node. Because the slots implementing the control channel
are secret, the adversary must follow mj to efficiently jam the
control channel. However, following mj reveals the identity of
the compromised node nj . This identification is based on the
Hamming distance between the sequences assigned to nodes and

the jamming hopping sequence. In the following two propositions,
we analytically evaluate the expected Hamming distance.

Proposition 1: For two random and independently generated
sequences mj and mℓ, defined over an alphabet A = {1, . . . ,K},
the expected Hamming distance E[d(mj ,mℓ)] as a function of
the sequence length X is given by

E[d(mj ,mℓ)] =
K − 1

K
X. (3)

Proof: The proof is provided in Appendix 1.

If the adversary has not compromised any node and is hopping
according to a random sequence mjam, the average Hamming
distance between mjam and any of the assigned sequences
mj , 1 ≤ j ≤ n, must increase at a rate of K−1

K . On the
other hand, if mjam is a subset of the sequence mj of a
compromised node nj , the Hamming distance between mjam and
mj is expected to be significantly lower (note that although the
adversary may be aware of mj , he may choose to follow only a
subset of it to avoid being identified). The CH can exploit this
observation to identify the compromised node.

In dynamic spectrum networks, the hopping sequences are not
necessarily random, because of their adjustment to account for
spectrum availability. Randomness is preserved only when the
number of idle channels K(i) is a factor of the alphabet size that
was used to generate the original sequences. In the general case,
the expected Hamming distance is expressed by Proposition 2.

Proposition 2: Consider two random and independently gen-
erated sequences mj and mℓ that are defined over an alphabet
A = {1, . . . ,K}. Suppose that the sequences are adjusted to m′

j

and m′
ℓ, respectively, according to the process outlined in Section

4.2. The expected Hamming distance E[d(m′
j ,m

′
ℓ)] as a function

of the length X of the sequences is

E[d(m′
j ,m

′
ℓ)] =

(
1− (K(i)− yK) ·

(xK

K

)2
−yK ·

(
xK + 1

K

)2)
·X (4)

where xK
△
= ⌊ K

K(i)⌋ and yK
△
= [K (mod K(i))].

Proof: The proof is provided in Appendix 2.

Identification process: For identification purposes, the CH ex-
ploits his knowledge of the subsequences sj , which are unique to
individual nodes. Let sjam denote the subsequence followed by
the jammer, excluding the slot positions in vector v. To identify
a compromised node, the CH measures the Hamming distance
between sjam and every assigned sequence sj . Note that the half-
duplex transceiver assumption limits the monitoring capabilities
of the CH to a single channel per slot. Because the hopping
sequence sjam is not known in advance, the CH periodically tunes
to sj’s of different nodes to compute the Hamming distance. To
do so, the CH needs only to know if channel sj(i) was jammed
at slot i. We now describe the steps for the identification process
for a single compromised node. The pseudo-code is shown in
Algorithm 1.
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Algorithm 1 Identification of a Single Compromised Node
1: Initialize : d(sj , sjam) = 0, ∀j; j = 1; i = 0; CN ← ∅
2: while J ==FALSE do
3: for x = 1, x ≤ X, x++ do
4: if mj(i) NOT JAMMED & mj(i) /∈ v then
5: d(sj , sjam) = d(sj , sjam) + 1
6: end if
7: if d(sj , sjam) < E[d(sj , sjam)]−δx && x > γ0 then
8: J =TRUE, CN → n, break
9: else

10: i++
11: end if
12: end for
13: if J ==TRUE then
14: break
15: else
16: j ++
17: end if
18: end while
19: return CN

Step 1: Initialize d(sj , sjam) = 0, ∀j.
Step 2: Synchronize with the hopping sequence mj of a ran-

domly selected node nj .
Step 3: For each slot i, i /∈ v, if mj(i) is not jammed, set

d(sj , sjam) = d(sj , sjam) + 1.
Step 4: After some number of slots X ≥ γ0, if d(sj , sjam) <

E[d(sj , sjam)] − δX , then node nj is considered to be
compromised.

Step 5: Randomly pick another node and repeat Steps 2-4 for
X slots.

In Algorithm 1, each node is monitored for at least γ0 slots
to obtain an accurate estimate of d(sj , sjam).3. The tolerance
margin δX is computed based on the standard deviation σX of
the Hamming distance. For example, considering δX = 3σX

yields a 99.7% chance for the Hamming distance of two random
sequences to be within that margin. The value of δX provides a
tradeoff between the speed of identification (smaller δX yields
tighter bounds on E[d(sj , sjam)]) and the false-positive identifi-
cation rate In the case of static spectrum assignment, the standard
deviation of d(sj , sjam) is equal to σX =

√
K−1
K2 X. The value

of σX for dynamic spectrum networks can be easily computed
based on eq. (4), in Appendix 2.

We emphasize that the value X takes into account only
slots that belong to subsequences sj . In reality, the delay in
the identification of compromised nodes is larger due to the
interleaving of common control slots that belong to c. The latter
slots do not contribute to the identification process and hence,
are excluded from the computation. As an example, consider the
hopping sequences shown in Fig. 2. Let sjam = s2, and γ0 = 10.
For X = 10, E[d(sj , sℓ)] = 8.75, δX = 3, and σX = 3.1.
Initially, the CH follows s1 for X = 10 slots. After the first ten

3. Faster identification of the compromised nodes can be achieved if the CH
evaluates the Hamming distance of all sequences sk for which sk(i) = sj(i), on
slot i, when the CH follows the sequence sj . This method is expected to speed
up the identification process by a factor of 1

K
.

slots, d(s1, sjam) = 8. The CH switches to sequence s2. Because
s2 is the jamming sequence, d(s2, sjam) = 0. Thus, node n2 is
declared compromised. For this set of parameters, the jammer
can avoid detection, only if he partially follows s2 for a fraction
α(X) ≤ 40% of the monitoring interval X . As X increases,
the fraction α(X) converges to its expected value in the case of
random jamming. This can be easily shown from the detection
condition of Step 4 of the identification algorithm. Assuming an
adversary which is active only for a fraction α(X) of the X slots
corresponding to a compromised sj and setting δX = τσX , where
τ denotes some desirable constant, the detection condition yields

d(sj , sjam) = E[d(sj , sjam)]− δX ⇒

(1− α(X))X =
K − 1

K
X − τ

√
K − 1

K2
X ⇒

α(X) =
1

K
+ τ

√
K − 1

K2X
, (5)

where we have used the fact that d(sj , sjam) = (1 − α(X))X,
when the jammer is following only a fraction α(X) of a com-
promised sequence sj . From (5), it is evident that α(X) → 1

K
when X →∞. This is a fairly intuitive result that indicates that
with the progression of the monitoring period X , a jammer that
partially follows a compromised PN code, cannot deviate from
the behavior of a random jammer without being detected.

An implicit assumption of our identification process is that the
CH is able to detect when a jamming signal interferes with the
reception of a control message within his cluster. It is possible
for the jammer to tune his transmission power so as to interfere
with the reception at a cluster node, but not at the CH. Such
a low-power jammer has a limited impact on the network due
to his small jamming range. We are primarily concerned with
the scenario presented in Fig. 1, in which a high power jammer
attempts to deny the control channel within a large network area.

5.2 Compromise of Multiple Nodes

When several nodes are simultaneously compromised, the jammer
can combine the acquired hopping sequences to reduce the
number of jammed slots. Without loss of generality, assume
that nodes n1, . . . , nq, q < n, are compromised. Suppose that
the jamming sequence sjam consists of the (time, frequency)
pairs that are common to compromised sequences {m1, . . . ,mq},
excluding the slots in v. In the case of static spectrum networks,
the expected length of sjam is given by Proposition 3.

Proposition 3: The expected length E[X] of a sequence sjam
consisting of the channel locations common to q random hopping
sequences {s1, . . . , sq} of length X is

E[X] =

(
1

K

)q

X. (6)

Proof: The probability that q random sequences overlap
at slot i is

(
1
K

)q . For the random sequences {s1, . . . , sq}, the
expected number of overlapping channel locations is expressed
by the expected number of successes in repeating X Bernoulli
trials with parameter

(
1
K

)q
.
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Note that the adversary cannot differentiate between the slot
positions assigned to the control channel and the

(
1
K

)q
L slot

positions that match due to the sj’s. Hence, the adversary must
jam all slots common to the compromised sequences to efficiently
deny access to the control channel. For the case of dynamic
spectrum networks, the expected length of the sequence sjam
is given by Proposition 4.

Proposition 4: The expected length E[X] of a sequence sjam
consisting of the channel locations common to q hopping se-
quences {s′1, . . . , s′q} of length X is

E[X] =
∑
z

(
yK

(
xK + 1

K

)q

+ (K(z)− yK)
(xK

K

)q)
Xz

(7)
where z denotes the number of channel availability changes over
the course of X =

∑
z Xz slots, and Xz denotes the number of

slots of the sequences sj for which the number of idle channels
is equal to K(z).

Proof: The proof follows similar steps to the proof of
Proposition 3 and is omitted.

To identify compromised nodes, the CH correlates the random
sequences sj , 1 ≤ j ≤ n, with the jammed channel locations. The
CH follows a monitoring sequence sCH , which is a concatenation
of subsequences from the sj’s.

sCH = s1(1 : Y )|| . . . ||sn((n− 1)Y + 1 : nY )

where Y denotes the number of slots that belong to the subse-
quences sj and are devoted to monitoring a node. Note here that
our computations ignore slots that belong to vector v. In reality,
to monitor a subsequence sj for Y slots, the CH must monitor nj

for (1 + M
L+M )Y slots, on average. The CH maintains a matrix

A = {aji|aji ∈ {0, 1}}n×nY (8)

where each row j corresponds to node nj and each column i
corresponds to the ith slot. Note that only non-control slots are
taken into account in the construction of matrix A. For A, an
element aji = 1 if while residing on channel f during the ith slot,
the CH detects f as jammed and sj(i) = f. Otherwise, aji = 0.
Considering each row A(j) as a codeword, the CH computes
the codeword weight W (A(j)) ∀j, and ranks the weights in a
descending order. The weight W (C) of a binary codeword C
is defined as the number of ones in the codeword. Compromised
nodes are expected to have a significantly larger weight than other
nodes and their weights will be of the same order. Assuming q
compromised nodes, the expected weight for a codeword A(j),
j = 1, · · · , q is

E[W (A(j))] =

(
1

K

)q

qY (9)

where E[W (A(j))] is computed over the qY slots devoted to
the monitoring of the q compromised nodes. The CH identifies
the set of nodes with high weights and compares those weights
to their expected value, expressed in (9). If the weight of a
codeword exceeds the expected value by some margin δq , i.e.,
W (A(j)) ≥

(
1
K

)q
qY + δq, the corresponding node nj is

Algorithm 2 Identification of Multiple Compromised Nodes
1: Initialize : A = 0, W = 0, j = 1, j =FALSE, CN ← ∅
2: v, n;
3: mCH = s1(1 : Y )|| . . . ||sn((n− 1)Y + 1 : nY )
4: while J ==FALSE do
5: if mCH(i) JAMMED & i /∈ v then
6: aji = 1, W (j) + +, ∀i, ∃ sCH(i) = sj(i), i++
7: end if
8: if i > γ1 // sufficient sampling then
9: sort(W ) // sort weights in a descending order

10: find j, ∃ W (A(j))− E[W (A(j)) > δq, CN ← j
11: J =TRUE
12: end if
13: end while
14: return CN

identified as compromised. The parameter δq is a tolerance margin
related to the standard deviation of W (A(j)). The pseudo-code
for the identification of multiple compromised nodes is shown in
Algorithm 2.

During the execution of Algorithm 2, the CH is not aware of
the number of compromised nodes q. Without knowing q, the
CH compares the computed weight of each node with multiple
threshold values δq, for different q’s. If any node violates any
threshold value, it is declared compromised and its revocation is
initiated via a hopping sequence update.

5.3 Compromise of the Clusterhead
By compromising the CH, the adversary can obtain all sequences
sj , 1 ≤ j ≤ n, the corresponding sequences mj , as well as c
and v. Using his knowledge of c and v, the adversary can deny
control-channel access to all cluster nodes by jamming only the
control channel locations. To address such a strong attack, the role
of the CH has to be periodically rotated among cluster members.
The steps of the hopping sequence assignment in the case of a
CH rotation are as follows:

Step 1 : The new CH randomly hops between channels.
Step 2 : In each slot, the CH attempts to communicate with a

cluster node nj to establish a pairwise shared PN code.
Random hopping continues until the establishment of
the PN code is confirmed by both parties (via an ACK
message).

Step 3 : The CH assigns a new hopping sequence m∗
j to nj ,

using the pairwise shared PN code. The sequence m∗
j

conforms to the design outlined in Section 4.1.
Step 4 : Node nj erases all information regarding the identity

of the new CH.
Step 5 : Steps 1-4 are repeated until all legitimate nodes are

assigned new hopping sequences, except for the previous
CH.

When a CH rotation occurs, the new CH ni has to update
all cluster nodes except the previous CH with new PN codes.
Because the new CH is not aware of the current PN sequences
followed by each cluster node nj , it randomly hops to different
channels in order to meet each node and assign it a new hopping
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sequence. If ni meets a node nj , it first establishes a pairwise PN
code with nj (via a commonly derived seed) and then updates
that node with m∗

j . For simplicity, we have made the assumption
that one slot is sufficient for communicating m∗

j to nj . In reality,
several packets may be needed to do that. The communication
between the new CH and any cluster node is still susceptible
to jamming activity. However, because the PN code used by the
two parties is not known to the jammer, the transmission will
eventually be successful. The reception of m∗

j is acknowledged
by nj via an acknowledgement message. The new CH repeats
this process until all cluster nodes are assigned new PN codes
and have acknowledged their reception.

Note that initiation of a CH rotation has to be invoked by the
individual cluster nodes, since the current CH is compromised.
Nodes can declare the CH to be compromised if they cannot ac-
cess the control channel for a prolonged period of time (computed
in Section 6.4). Any cluster node other than the current CH may
decide to become the CH and initiate the CH rotation process.
If more than one nodes decide to become CHs, a cluster may be
partitioned to smaller clusters.

6 PERFORMANCE ANALYSIS
In this section, we analytically study the anti-jamming metrics
introduced in Section 2, and validate our analysis via simulations.
We evaluate both static and dynamic spectrum networks.

Simulation Setup: For static spectrum networks, we construct
the hopping sequences mj according to the process described in
Section 4.1. Under an external jammer model, the adversary jams
channels in a random fashion. Under an internal jammer model,
the adversary jams only those slots in which the compromised
sequences overlap, and remains silent in all other slots. The
simulations are run for 5,000 slots.

For dynamic spectrum networks, we simulate PR activity to
obtain temporally varying spectrum availability. We consider a
cellular network as the primary network (PRN), operating over
K = 10 frequency bands. The call arrival process at the PRN fol-
lows a Poisson distribution with an arrival rate of λ = 2 calls/min.
The call duration is assumed to be exponentially distributed with
parameter µ. For each value of µ, we run the simulation until
5,000 calls are completed. The set of idle channels is updated
each time a new call arrives, or when a call is terminated. The
jammer is assumed to be aware of the set of idle channels at
every slot. The slot duration is set to 100 msec. Each secondary
node (e.g., CR node) dynamically adjusts its hopping sequence
according to the process described in Section 4.2.

6.1 External Jammer
We first consider the case of an external jammer. In this scenario,
the hopping sequences followed by each cluster node remain
secret. Before we compute the metrics of interest, we derive the
optimal jamming strategy for an external jammer. Without any
inside information, the jammer must guess the location of the
control channel. The optimal jamming strategy is obtained from
the following proposition.

Proposition 5: The optimal strategy of an external jammer is
to continuously jam the most frequently visited channel.

Proof: The proof is provided in Appendix 3.

When the channel location vector c is random, the jammer
is expected to have the same likelihood of success, regardless
of how he constructs mjam. This can be easily seen frorm eq.
(6) of Appendix 3, when p1 = . . . = pK = p. Note that
for the subsequence cjam which is of interest, it holds that
Pr[c(i) = cjam(i)] = p, irrespective of the values of qi’s. If c is
not random (this is true for dynamic spectrum networks where the
modulo operation reduces the randomness in c), the optimal jam-
ming strategy is to continuously jam the most probable channel.
Based on equation (4) of Appendix 2, in the case of dynamic
networks channels {1, . . . , yK} (yK = [K (mod K(i))] > 0)
occur in the hopping sequences m′

j with the highest probabil-
ity. Therefore, the optimal jamming strategy is to continuously
jam any of the channels in {chi(1), . . . , chi(yK)}, yielding a

success probability of
⌊ K
K(i)

⌋+1

K per slot. In fact, choosing any
probability distribution which distributes the probability mass
on the set {chi(1), . . . , chi(yK)} yields the same probability of
success. Given the optimal jamming strategy, we now evaluate
the proposed anti-jamming metrics for an external jammer.

6.1.1 Evasion Entropy
The elements mj(i) of a sequence mj are generated independent-
ly for each slot. Hence, knowledge of previous control channel
locations does not reveal any information about future ones. In
this case, Ei = H(Ii). For static spectrum networks, mj(i) is
drawn from a uniform distribution, yielding the maximum value
for the evasion entropy, i.e., Ei = log2 K bits. For dynamic
spectrum networks, Ei depends on the number of idle channels
K(i). Using the probability distribution of eq. (4) in Appendix
2, it can be shown that

Ei =
1

K

(
log2

(
KyK−K(i)xK

(xK + 1)(xK+1)yKx
(K(i)−yK)xK

K

))
(10)

where xK
△
= ⌊ K

K(i)⌋ and yK
△
= [K (mod K(i))] > 0.

6.1.2 Evasion Delay
Proposition 6: In static spectrum networks, the expected eva-

sion delay E[D] for re-establishing the control channel when no
node has been compromised is

E[D] =
K

K − 1
· L+M

M
. (11)

Proof: The proof is provided in Appendix 4.

For the case of dynamic spectrum networks, the probability of
evading jamming in slot i is equal to (1−Pr[M]), where Pr[M]
is given in eq. (5d) of Appendix 2. Therefore, E[R] = 1

1−Pr[M] ,

whereas E[N ] remains the same as in static networks. Substituting
E[R] and E[N ] yields

E[D] =
1

1− Pr[M]
· L+M

M
. (12)

6.1.3 Evasion Ratio
The evasion ratio reflects the communication efficiency of the
control channel. It measures the fraction of slots used for control
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Fig. 6: (a) pmf of the Hamming distance between two random sequences of length 100, (b) expected Hamming distance as a function
of a sequence of length L for static spectrum networks (error margins denote 99.7% confidence intervals), (c) expected Hamming
distance as a function of L for dynamic spectrum networks.

communication in the presence of a jammer. The expected value
of the evasion ratio E[ER] can be directly derived by taking the
inverse of the evasion delay.

6.1.4 Simulation and Numerical Examples

In Fig. 5(a), we show the expected evasion delay as a function
of the ratio M

M+L for static spectrum networks. The ratio M
M+L

denotes the fraction of time devoted to the control channel. It
can be observed that the evasion delay drops with the increase in

M
M+L . This is due to the fact that the control channel occurs more
frequently and hence, the jammer will be unsuccessful in guessing
the location of the control channel in fewer slots. However, in the
event of a node compromise, fewer slots are available to identify
compromised sequences when M

M+L increases. In Fig. 5(b), we
show the expected evasion delay as a function of M

M+L for various
values of K(i) and for dynamic spectrum networks. This graph
corresponds to equation (12). For a fixed value of K(i), a behavior
similar to the case of static spectrum networks is observed.

The evasion ratio can be obtained by inverting the values of the
evasion delay. E[ER] increases linearly with M

M+L . To take into
account temporal variations in spectrum availability in the case
of CRNs, we compute the evasion ratio under simulated PRN
activity. In Fig. 5(c), we show the evasion ratio as a function of

M
L+M for dynamic spectrum networks. Solid lines correspond to
the simulation values, while dashed lines correspond to the the-
oretical ones. To obtain the theoretical values, we used Equation
(12) to calculate the evasion delay and then computed its inverse

value. For the calculation of Pr[M], the mean value of the number
of idle channels E[K], obtained via simulation, was used. For the
simulation results, we assumed the adversary is aware of the set
of idle channels Fi in each slot i. Based on the optimal jamming
strategy, the adversary jams the most probable channel in each
slot. If the adversary succeeds in jamming the control channel
in slot i, we measure the delay until the control channel is re-
established. The evasion ratio is computed as the inverse value
of the average evasion delay. From Fig. 5(c), we observe that the
simulated values closely match the theoretical ones. As expected
from the theoretical analysis, the evasion ratio is a linear function
of the fraction of time that the control channel is available.

6.2 Compromise of a Single Node

When a single node nj is compromised, its hopping sequence
mj is revealed to the adversary. By following mj , the adversary
can jam all slots implementing the control channel. In this case,
Ei = 0 and E[ER] = 0, for as long as the compromised node
is undetected. The evasion delay is equal to the time required
to identify the compromised node. Under a single compromised
node scenario, we evaluate the properties of the Hamming dis-
tance between randomly hopping sequences and correlated ones,
that lead to the identification of the compromised node.

In Fig. 6(a), we show the pmf of the Hamming distance
between two random sequences when an alphabet A = {1, . . . , 5}
is used for random sequence generation. The pmf is concentrated
in a small region around the mean. For a sequence of length
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100, 99.7% of possible random sequences are expected to have
a Hamming distance of at least 68. If a jammer overlaps with
mj in more than 32 slots per 100, the CH will declare mj to be
compromised.

In Fig. 6(b), we show the expected Hamming distance as a
function of the sequence length L for static spectrum networks.
Error margins indicate the 99.7% confidence interval (three stan-
dard deviations). We observe that the event of node compromise
can be easily identified by comparing the hopping sequence of
the jammer to those assigned to cluster nodes. The Hamming
distance must fall within well-confined margins, allowing fast
identification of the compromised node.

In Fig. 6(c), we show the expected Hamming distance as a
function of L for dynamic spectrum networks. Both theoretical
and simulation values are shown. Note that the temporal variations
in channel availability do not significantly affect the expected
Hamming distance, which increases linearly with the length of the
hopping sequences. The allowable deviation from the expected
value remains small, leading to fast identification if a jammer
follows a compromised sequence.

6.3 Compromise of Multiple Nodes

When multiple nodes are compromised, the jammer can combine
their hopping sequences to obtain the channel locations of the
slots in which these sequences overlap. This reduces the adver-
sary’s effort to jam the control channel (fewer slots need to be
jammed) and makes the identification process more difficult. As in
the case of a single compromised node, Ei = 0 and E[ER] = 0.
To evaluate the evasion delay, we compute the time required to
identify the set of compromised nodes, assign new sequences to
uncompromised ones, and re-establish the control channel.

Suppose that q nodes are compromised in a cluster of n nodes.
According to Algorithm 2, each of the q nodes is expected to have
a weight of

(
1
K

)q
qY, where Y is the time in slots that the CH

uses to monitor each of the q compromised nodes. Let γ0 be the
number of jammed slots that are required for identification of the
compromised nodes. To observe γ0 jammed slots, the CH needs
to monitor channels according to mCH for an average time of
qX = Kqγ0 slots. Upon identification of the compromised nodes,
the CH must assign new hopping sequences to the remaining
(n − q) uncompromised nodes, yielding an additional delay of

(n−q)Xc slots, where Xc is the number of slots needed to assign
a new sequence. Once sequences are assigned, a delay equal to
the first occurrence of the control channel under a random jammer
is incurred. Thus, the total expected evasion delay is:

E[D] = Kqγ0 + (n− q)Xc +
K

K − 1
· L+M

M
. (13)

In Fig. 7(a), we show E[D] as a function of q for static spectrum
networks. For simplicity, we take Xc = 1 and γ0 = 100 slots.
We observe that for large values of K, E[D] is very large when
q ≥ 3. This is due to the fact that the probability of overlapping
among the q sequences at random becomes very small for large
K. Thus, a much longer observation period is required to identify
compromised nodes. For faster identification, the CH may limit
the assigned hopping sequences to a subset of M.

Fig. 7(b) shows E[D] as a function of q for dynamic spectrum
networks. We observe a low value of E[D] when the PR activity is
high. This behavior can be explained as follows. High values of µ
translate into a smaller number of idle channels K(i). Therefore,
CRs hop between a smaller set of channels. The probability of
compromised sequence overlap in a slot i, i /∈ v, a necessary
condition for their identification, increases with the reduction in
K(i). This is also evident from (13). Hence, the CH is able to
identify compromised nodes faster using Algorithm 2.

To verify the effectiveness of Algorithm 2, we perform the
following simulation experiment. We consider a cluster of 10
nodes and generate 10 hopping sequences, each of length 5,000. q
of those sequences are assumed to be compromised. The jammer
computes the jamming sequence mjam as the intersection of
the compromised sequences, and jams only the slots in which
the q sequences overlap. Algorithm 2 is executed to compute
the weight of each hopping sequence. The CH monitors the K
channels according to sequence mCH , following each sequence
in a round-robin manner for 100 slots. In Fig. 7(c), we show
the average weight E[W ] of a compromised node compared with
the maximum weight obtained from the set of uncompromised
sequences, as a function of K. We observe that compromised
nodes have a consistently higher weight than uncompromised
nodes, leading to identification of the former ones. Fig. 8 shows
a comparison between the weight of compromised nodes and the
maximum weight of uncompromised nodes, as a function of q.

When the number of compromised nodes is small (less than 4),
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Fig. 8: Average weight of compromised nodes and maximum
weight of uncompromised ones versus q.

the weight of a compromised node is sufficiently distinct from the
weight of an uncompromised node. However, for higher values
of q, compromised sequences have less probability to coincide in
each slot except the control channel slots. In this scenario, the
CH must monitor each node for a large number of slots, in order
to measure disparities in the weights of different sequences.

6.4 Compromise of the Clusterhead
If the CH is compromised, the adversary knows the hopping
schedules of all nodes in the cluster as well as the slots of the
control channel. Hence, the evasion entropy and the evasion ratio
are equal to zero. The evasion delay E[D] is equal to the sum
of three components: (a) the delay E[D1], until the compromise
of the CH is detected, (b) the delay E[D2], of assigning new
hopping sequences to cluster members, and (c) the delay E[D3].
for re-establishing the control channel.

Cluster nodes consider the CH compromised when E[ER] falls
below a threshold value ρ0 for an extended period of time. The
parameter ρ0 is fixed and depends on the expected delay under
a fixed number of compromised nodes. Let q0 be the maximum
tolerable number of compromised nodes within a cluster, before
the CH is assumed to be compromised. The evasion delay when
q0 nodes are compromised (E[D1] in the calculation of E[D]) is
given by equation (13), with q = q0. The computation of E[D1]
is based on fixed system parameters such as γ0,K, L,M, and Xc.
Taking the inverse of E[D1] when q = q0, yields the threshold
value ρ0 that triggers a CH rotation. To detect the compromise
of the CH, individual nodes compare E[ER] with ρ0.

Proposition 7: The expected delay until the new CH assigns
new hopping sequences to n − 1 cluster nodes (excluding the
compromised CH) is

E[D2] =
K2

K − 1
(n− 1)Xc. (14)

Proof: The proof is provided in Appendix 5.

With the assignment of new sequences, the adversary’s success
becomes equivalent to that of an external jammer. An additional
delay E[D3] is incurred until a slot implementing the control

channel occurs in the new hopping sequences. This delay is equal
to the evasion delay in the case of the external jammer. The
values of E[D2] and E[D3] are negligible compared with E[D1],
given that E[D1] grows exponentially with the number of com-
promised nodes, whereas E[D2] and E[D3] are constant. Hence,
the expected value for the evasion delay under CH compromise
approximates the expected evasion delay as calculated in (13) for
the maximum acceptable value of q.

7 RELATED WORK

Jamming in wireless networks has been extensively studied. Most
prior research assumes that the jammer is an external entity,
oblivious to the protocol specifics and cryptographic secrets [19].
Recently, several works have considered the problem of jamming
by an internal adversary, who exploits knowledge of network
protocols and secrets to launch DoS attacks on layers above the
physical layer [6], [14], [17], [18], [24]–[26]. In this section, we
classify related work based on the adversarial model.

Jamming Under an Internal Threat Model– Chan et al.
considered the problem of control-channel jamming in the context
of GMS networks [6]. They proposed the replication of control
information over multiple channels according to a binary encod-
ing based key (BBK) assignment. Assuming an adversary who is
capable of jamming only one channel per time slot, the authors
derived necessary conditions to guarantee control channel access
to all users within several slots. They also showed that the BBK
assignment leads to the identification of a certain number of
compromised nodes.

Tague et al. proposed a cryptographic key-based mechanism
for hiding the control-channel slots [26]. Nodes can only dis-
cover a subset of these locations with some probability. Their
method allows for graceful degradation in the control-channel
secrecy as a function of the number of compromised nodes, as
opposed to the threshold approach in [6]. Further, they proposed
an algorithm called GUIDE for identifying compromised nodes
based on the set of jammed control channels. They formulated
the identification problem as a maximum likelihood estimation
problem [26]. All methods in [6], [25], [26] consider a server-
client model, where base stations are assumed to be secure.

Chiang et al. proposed an anti-jamming scheme for broad-
cast communications in DS- and FH-CDMA systems [7]. Their
method organizes broadcast PN codes into a binary key tree. Each
node on the tree corresponds to a unique PN code, known only
to a subset of users. Every message is spread by multiple PN
codes such that all users can decode using exactly one code.
Identification of compromised nodes is achieved by relating the
PN code adopted by the jammer to those known to each user.

Several schemes eliminate the need for secret PN codes [3],
[14], [17], [24]. Baird et al. proposed the BBC algorithm, which
can recover jammed messages under some special conditions.
can insert arbitrary messages into the broadcast channel but
cannot erase any of the original messages. Pöpper et al. proposed
a solution called Uncoordinated DSSS (UDSSS) [17]. In their
scheme, broadcast transmissions are spread according to a PN
code that is randomly selected from a public set of codes. At
the receiving end, nodes have to record transmitted messages
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and attempt to decode them by exhaustively applying every PN
code in the public codebook. Because the selected PN code is
not known a priori to any receiver, the jammer has to guess
the PN code, thus significantly complicating the jamming task.
However, message transmissions have to be repeated several times
to allow receivers to synchronize with the transmitter. Strasser et
al. proposed an uncoordinated frequency hopping (UFH) scheme
for establishing shared secret keys between devices that do not
share any prior secrets, in the presence of a jammer [24]. In UHF,
the transmitter and receiver hop between channels at random.
After some number of hops, they are able to exchange a common
pairwise key and independently derive a pairwise shared PN
code. An improvement in communication latency and jamming
resistance of the original UHF scheme was presented in [23], by
combining coding techniques with hashing. Slater et al. improved
the communication efficiency of UFH by using Merkle trees,
distillation codes, and erasure coding [21].

Liu et al. proposed RD-DSSS, a randomized differential DSSS
scheme that enables jamming-resistant broadcast using only pub-
licly known PN codes [14]. In RD-DSSS, a “0” bit is encoded
using two randomly selected PN codes with low correlation, while
a “1” bit is encoded using two PN codes with high correlation.
The selected PN codes are appended at the end of each message,
thus slightly decreasing the communication efficiency compared
with the original DSSS. Recovery of the PN codes that were
selected by the sender is achieved only after the transmitted
message is received.

Jamming Under an External Threat Model– Under an
external threat model, jamming is often mitigated by employing
SS techniques [19], [20]. In these techniques, the transmitted
narrowband signal is spread over a larger bandwidth according
to a secret PN code. Anti-jamming properties are achieved
because more energy is required to cause interference in a larger
bandwidth. The typical processing gain in SS communications is
in the range of 20 to 30 dB [19], [20].

Xu et al. studied the problem of jamming in systems where
spreading is not possible (or effective) [28]–[30]. They studied the
problem of detecting physical-layer and MAC-layer DoS attacks
based on jamming [30]. They proposed a slow frequency hopping
method to avoid jamming, but assumed that hopping sequences
remain secret. For mobile networks, they proposed the use of
spatial retreats to avoid communication within the jammed area.
Formal measures for detecting jamming attacks were introduced
in [29]. Xu et al. also proposed the establishment of a timing-
based low bitrate covert channel to notify nodes outside the
jamming area about the presence of a jammer [28]. This channel
maps the inter-arrival times of corrupted packets into bits. Cagalj
et al. proposed wormhole-based anti-jamming techniques for
sensor networks [5]. Using a wormhole link, sensors within a
jammed region establish communications outside this region, and
notify them regarding ongoing jamming attacks.

Jamming Beyond the PHY Layer– The use of jamming
as a vehicle for launching DoS attacks against higher-layer
functionalities was studied in [4], [5], [8], [11]–[13], [15], [18].
Brown et al. demonstrated that a jammer can exploit implicit
packet identifiers such as packet size, timing, and sequence

number at the transport or network layer to classify transmitted
packets and launch selective jamming attacks [4]. Proaño and
Lazos showed the feasibility of selective jamming by performing
real-time packet classification. Liu et al. proposed a layered
architecture called SPREAD to mitigate the impact of smart
jammers that target multiple layers of the network stack [13].
SPREAD randomizes protocols at each layer, thus increasing the
adversary’s uncertainty with respect to the protocol execution.
Finally, Li. et al. provided a game theoretic approach to optimal
jamming and anti-jamming strategies at the MAC layer [11].

8 CONCLUSIONS

We addressed the problem of control-channel jamming attacks
from insider nodes. We proposed a randomized distributed scheme
for maintaining and establishing a broadcast channel using fre-
quency hopping. Our method differs from classical frequency
hopping in that the communicating nodes are not synchronized
to the same hopping sequence. Instead, each node follows a
unique hopping sequence. We further proposed a mechanism
for adjusting hopping sequences to dynamic spectrum conditions
without incurring any extra overhead. Our scheme can identify
compromised nodes through their unique sequences and exclude
them from the network. We evaluated the performance of our
scheme both in static- and dynamic-spectrum networks, based on
the metrics of evasion entropy, evasion delay, and evasion ratio.
We further evaluated the Hamming distance between the jamming
sequence and those assigned to compromised and uncompromised
nodes. Our proposed scheme can be utilized as a temporary
solution for re-establishing the control channel until the jammer
and the compromised nodes are removed from the network.
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