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Abstract—Dynamic spectrum access (DSA) and MIMO com-
munications are among the most promising solutions to address
the ever increasing wireless traffic demand. An integration that
successfully embraces the two is far from trivial due to the
dynamics of spectrum opportunities as well as the requirement
to jointly optimize both spectrum allocation and spatial/antenna
pattern in a distributed fashion. Regardless of spectrum dynam-
ics and heterogeneity, existing literature on channel/power allo-
cation in MIMO DSA systems is only applicable to centralized
cases. Our objective here is to design distributed algorithms
that jointly allocate opportunistic channels to various links and
to simultaneously optimize the MIMO precoding matrices so as
to achieve fairness or maximize network throughput. For self-
interested DSA links, our distributed algorithm allows links to
negotiate channel allocation based on Nash bargaining (NB) and
configure the precoding matrices so that links’ rate demands are
guaranteed while the surplus resources (after meeting minimum
rate demands) are fairly allocated. Next, we consider a network
throughput maximization formulation (NET-MAX). Both the
NB-based and NET-MAX problems are combinatorial with
mixed variables. To tackle them, we first transform the original
problems by incorporating the concept of timesharing. Using
dual decomposition, we develop optimal distributed algorithms
for timesharing case, which shed light on how to derive a
distributed algorithm for the original problems. Our work fills
a gap in the literature of channel allocation where a central
controller is not available.

Index Terms—Nash bargaining, dual decomposition, dis-
tributed algorithm, throughput maximization, cognitive radio,
MIMO precoding, fairness, rate demands.

I. INTRODUCTION

Mobile data traffic has grown explosively in recent years
and is estimated to increase more than one thousand-fold
in the next 10 years [2]. Dynamic spectrum access (DSA)
and multi-input multi-output (MIMO) communications are
among the most promising solutions to address this ever
increasing wireless demand. In a DSA system, secondary
users (SUs) communicate opportunistically on temporarily
idle or under-utilized portions of the licensed spectrum.
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MIMO systems boost spectral efficiency by allowing a
multi-antenna node to simultaneously transmit multiple data
streams (i.e., spatial multiplexing). Recent standards (e.g., 4G
Advanced-LTE, IEEE 802.16e, IEEE 802.11ac) adopt MIMO
communications as a core feature. The FCC has opened
up TV white bands for opportunistic, secondary use [3]. A
timely issue is to integrate both technologies into a single
system.

MIMO transmitters can realize spatial multiplexing by
employing the precoding technique, in which a vector of
information symbols (one symbol per data stream) is pre-
multiplied by a matrix, called a precoder, before being
transmitted over an antenna array [4]. By adjusting the
amplitude and tuning the phase of each complex element in
the precoding matrix, one can control the powers allocated to
various data streams and the antenna’s radiation directions.
On the other hand, through channel bonding/aggregation, a
DSA user with cognitive radio (CR) capabilities can simul-
taneously transmit over several channels (in the frequency
domain), obtained either from spectrum databases/brokers
[3] or through sensing. Given a pool of temporarily idle
channels and a number of MIMO-capable secondary devices,
one critical issue is how to jointly assign channels to various
links and simultaneously optimize the MIMO precoders so as
to maximize a system objective (e.g., network throughput or
proportional fairness, etc.) while meeting links’ rate demands.

The problem of joint channel/power allocation for a set
of links, even for a network of single-antenna devices and
without the need to protect primary users (PUs), is known
to be NP-hard [5]. In an opportunistic MIMO-capable DSA
network with spatial multiplexing, the problem is even more
challenging. First, channel assignment for various links must
be done in a dynamic and adaptive manner to harvest
link/user and frequency diversities. Second, this channel
assignment has to take into account both MIMO antenna
radiation directions and the powers allocated to various data
streams over both the space/antenna and frequency dimen-
sions (see Fig. 1(c)). Mathematically, we face a combinatorial
optimization problem with a large number of mixed vari-
ables, which increases quadratically with the antenna array
size. Third, the spectrum opportunities are heterogeneous for
different secondary links, i.e., the set of available channels
changes from one link to another (see Fig. 1(d)). Fig. 1 illus-
trates an example where several TV whitespaces are allocated
to 3 links with nonidentical sets of available channels (S1,
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Fig. 1. (a) MIMO-capable DSA network with an access point/database or spectrum broker, (b) ad hoc MIMO-capable DSA network, (c) channel assignment
and power allocation over both antenna/space and frequency dimensions, (d) heterogeneity of spectrum opportunities (Si refers to the idle spectrum as
seen by link Li).

S2, and S3). Forth, considering a context in which DSA
users are administered by different entities that are distributed
in nature, existing centralized channel allocation algorithms
(e.g., [5] [6] [7]) are inapplicable.

This article designs distributed algorithms that al-
low MIMO-capable SUs, referred to as cognitive MIMO
(CMIMO) nodes, to cooperate/bargain to determine their as-
signed channels and optimally design their Tx/Rx precoders
to either achieve fairness or maximize network throughput
under a heterogeneous spectrum scenario. For the fairness
objective, we propose a bargaining framework, referred to as
BF-CMIMO in which the surplus/remaining resources after
meeting links’ rate demands are shared in a proportionally
fair manner. Bargaining-based resource allocation, e.g., Nash
bargaining (NB) [8], is a type of cooperative games that
often yields superior performance to noncooperative ones
[9] [10] [11] [12]. However, such an approach is often
centralized (requires the assistance of an arbitrator to manage
the bargaining process). These works also do not support
exclusive channel occupancy. The challenge that hinders a
fully distributed bargaining algorithm with exclusive chan-
nel occupancy is the combinatorial complexity of the joint
power/channel allocation problem, which includes both inte-
ger and real variables. Even by relaxing the integer variables,
the problem is still non-convex. The network throughput
maximization problem (NET-MAX) also faces similar chal-
lenges.

Methodologically, to deal with the joint power and channel
allocation problem, seminal works (e.g., [5] [6] [7]) relied on
the zero-duality gap (under the assumption of a theoretically
infinite number of channels) to solve the problem in the
dual domain. Unfortunately, this technique is only applicable
to the centralized scenario (e.g., downlink case) but not
distributed cases (e.g., cellular uplinks or ad hoc networks).
Specifically, for the NET-MAX problem, [5] [6] [7] decom-
posed the problem in its dual domain w.r.t. carriers/channels.
A central computer is then used to solve various per-carrier
subproblems and find by trial and error the most suitable
link for a given channel. In a DSA setting, CR nodes may
belong to different administrative entities that are distributed
in nature. Hence, the existence of a central controller is not
guaranteed. Digging deeper, given the aforementioned zero-
duality gap, one would want to decompose the problem w.r.t.

links in its dual domain to obtain a distributed algorithm.
However, the resulting subproblems in the dual domain still
face the same combinatorial selection of channels as in the
primal problem. Moreover, for the BF-CMIMO framework,
the decomposition w.r.t. carriers/channels is not even possible
due to the product-structure of its objective function (e.g., [8]
[9] [10] [11] [13] [12]).

To overcome the aforementioned challenges in this paper,
we transform the initial BF-CMIMO and NET-MAX formu-
lations into their equivalent ones, whose relaxed versions are
convex. This relaxed problems serve two purposes. First, the
relaxed variable can be interpreted as a “timesharing factor”
that represents the fraction of time a channel is allocated
to a given link. Hence, this relaxed version is of practical
interest when synchronization among links is possible. Using
dual decomposition [14], we develop distributed algorithms
for the relaxed timesharing problems of both BF-CMIMO
and NET-MAX and prove their convergence to the globally
(centralized) optimal solutions. Second, the distributed bar-
gaining algorithms under timesharing allow us to gauge the
preferences of different CMIMO links for a give channel
(quantified by a “payoff” vector). Using these preferences,
we develop a heuristic distributed algorithms for the original
BF-CMIMO and NET-MAX formulations.

Simulations indicate that the heuristic distributed algo-
rithms for BF-CMIMO and NET-MAX attain 95% per-
formance of their optimal solutions (found via exhaustive
search), and are within 87% and 78% of the upper bound on
the performance of their optimal solutions (obtained under
the timesharing assumption). When the number of channels
is large, the distributed NET-MAX algorithm achieves almost
the same performance as the centralized (optimal) one, which
is based on the zero-duality gap (e.g., [6]). Table I compares
existing algorithms that exploit the zero-duality gap and
our proposed algorithms. Our proposed schemes and for-
mulations supplement the MIMO spectrum sharing literature
e.g., [15] [16] [17] [18] [19], where a given channel is
simultaneously shared by several links. These works assume
homogeneous spectrum, use a noncooperative game model
and do not consider rate demands and fairness. In contrast,
we consider an exclusive channel allocation policy (amenable
to multi-carrier systems like OFDMA), modeled as a coop-
erative game with heterogeneous spectrum opportunities.
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TABLE I
COMPARISON BETWEEN ZERO-DUALITY BASED APPROACH AND OUR PROPOSED APPROACH.

Methods BF-CMIMO NET-MAX
Distributed Centralized Distributed Centralized

Zero-duality Inapplicable Inapplicable Inapplicable Applicable (only for a
Gap (e.g., [5] [6] [7]) large # of channels)
Proposed approach Applicable Applicable Applicable Applicable

In Section II, we present the network model and problem
formulation. Centralized and distributed algorithms for BF-
CMIMO are presented in Section III. Section IV addresses
the NET-MAX problem. Numerical results are discussed in
Section V, followed by concluding remarks in Section VI.

Throughout the paper, we use (.)H for the Hermitian trans-
pose, tr(.) for the trace of a matrix, |.| for the determinant, and
eigmax(.) for the maximum eigenvalue of a matrix. Matrices
and vectors are indicated in boldface.

II. PROBLEM FORMULATION

A. Network Model

We consider a CMIMO network of N links. Each node is
equipped with M antennas (our analysis is also applicable
when nodes have different numbers of antennas). The set of
channels available for link i (i.e., temporarily not occupied
by PUs) is denoted by Si. In general, Si 6= Sj for two links
i and j, although due to their proximity the two links are
likely to share many channels. The network’s opportunistic
spectrum is the union of available-channel sets from all links

ΨK
def
=

N
∪
i=1

Si, consisting of K orthogonal (not necessarily
contiguous) channels with central frequencies f1, f2, . . ., fK
(for simplicity, we use the same notation fk to refer to the
kth channel). Let ΦN

def
= {1, 2, . . . , N} be the set of CMIMO

links. At a given time, each link i may simultaneously
communicate over a set of channels, denoted by Ai.

Our setup supports an exclusive channel occupancy
scheme, i.e., each channel is exclusively allocated to no
more than one SU link or Ai ∩ Aj = ∅,∀i 6= j. First, if
a channel is simultaneously shared by more than one link,
the accumulated interference from multiple uncoordinated
SUs cannot be controlled (even if we impose a power
mask constraint, as specified by FCC in [3]). Consequently,
excessive interference from SUs can harm PU transmissions.
Second, in contrast to existing works in the literature (e.g.,
[15] [16] [17] [20] [18]) where all SUs share the same pool
of channels (homogeneous spectrum sharing), we consider
a heterogeneous spectrum setting (i.e., the set of spectrum
opportunities/channels varies from one SU to another). In
this case, allocating a channel to more than one link may not
always be possible. Finally, the exclusive channel occupancy
model is more amenable to protocol implementation via the
widely used multi-carrier systems like OFDMA or Non-
Contiguous OFDM in cognitive radio networks.

Let A = [ai,k] be an N × K matrix that represents the
channel assignment; ai,k = 1 if channel fk is allocated to
link i, otherwise ai,k = 0.

On a given allocated channel, a transmitting node can send
up to M independent data streams using its M antennas.
Formally, for channel fk, let xi,k with E[xi,kx

H
i,k] = I

be a column vector of M information symbols, sent from
transmitter i to its receiver. Each element of xi,k is from one
data stream. Let T̃i,k ∈ CM×M denote the precoding matrix
of node i on channel fk. Then, the transmit vector is T̃i,kxi,k
and the received signal vector yi,k is given by:

yi,k = H
(k)
i T̃i,kxi,k + nk (1)

where H
(k)
i is an M ×M channel gain matrix for channel

fk on link i and nk ∈ CM is an M × 1 complex Gaussian
noise vector with identity covariance matrix I, representing
the floor noise plus normalized (and whitened) interference
on channel k. Each element of H

(k)
i is the multiplication

of a distance- and channel-dependent attenuation term, and
a random term that reflects multi-path fading (assumed to
be a complex Gaussian variable with zero mean and unit
variance).

We assume flat fading and the channel state information
(CSI) H

(k)
i is available at SU transmitters via conventional

channel estimation methods for PUs (e.g., training sequences
embedded into the handshaking packets of MAC protocols
or blind channel estimation [21]). Robust bargaining models
with imperfect or partial CSI are left for future work. The
Shannon rate for link i on channel fk is [4]:

Ri,k = log |I + T̃H
i,kH

(k)H
i H

(k)
i T̃i,k|. (2)

Note that in the above, the information vector xi,k and
noise nk are absorbed in equation (2) as we assume
E[xi,kx

H
i,k] = I 1 and the normalized noise-plus-interference

(from primary users) vector nk has an identity covariance
matrix I.

The total rate over all channels assigned to link i is:

Ri =
∑
k∈Si

ai,kRi,k. (3)

Each link i is subject to a rate demand ci, i.e., we require
that Ri ≥ ci. PUs are protected through database-authorized
access and frequency-dependent power masks on secondary
transmissions. Note that FCC specifications [3] impose power
masks on opportunistic transmissions even over idle channels,
if such channels are adjacent to PU-active channels (e.g.,
this power mask is 40 mW for bands adjacent to active TV

1The power allocation overM antennas/streams of a transmitter is realized
through its precoding matrix, not information symbols
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bands). Let Pmask
def
= (P

(1)

mask, P
(2)

mask, . . . , P
(K)

mask) denote the
vector of power masks over various channels. Let P (i)

s,k denote
the allocated power on channel k and antenna s of link i, we
require:
M∑
s=1

P
(i)
s,k = tr(T̃H

i,kT̃i,k) ≤ P (k)

mask,∀i ∈ ΦN and ∀k ∈ ΨK .

(4)
To account for spectrum heterogeneity, we force link i

not to transmit on channels that are not available for its use
by imposing a link-dependent power-mask vector. For link i,
Pmask,i

def
= (P

(1)

mask,i, P
(2)

mask,i, . . . , P
(K)

mask,i), where P (k)

mask,i =

0 if fk /∈ Si, and P
(k)

mask,i = P
(k)

mask otherwise. Note that
Pmask,i differs from one link to another.

For link i, the total power allocated on all channels and
all antennas should not exceed a limit Pmax (without loss of
generality, we assume the same power limit for all secondary
users). Consequently,∑

k∈Si

M∑
s=1

P
(i)
s,k =

∑
k∈Si

tr(T̃H
i,kT̃i,k) ≤ Pmax. (5)

B. Nash Bargaining Formulation

1) Overview of Bargaining Games: Bargaining is a special
type of cooperative games where players negotiate/bargain
their actions/strategies to reach an agreement that guarantees
minimum payoffs (otherwise, players would act indepen-
dently). The agreement is associated with a utility vector
u

def
= (u1, . . . , uN ), where ui is the utility of player i,

i = 1, . . . , N . Let bi and Bi denote the action and action
space for player i, respectively (bi ∈ Bi). The utility ui is
a function of the action vector b def

= (b1, . . . , bN ). The utility
space U is the set of all possible payoff allocations u that
result from all possible action vectors b. It is also possible
that no agreement is reached after bargaining, a situation
referred to as a disagreement point. A disagreement point
is associated with a minimum payoff vector u0.

In [8], Nash proposed axioms that define a Nash bargaining
solution (NBS). An NBS guarantees all links’ demands and
is Pareto-optimal, meaning that there is no other solution
that simultaneously leads to better payoffs for two or more
players. Nash proved that if U is upper-bounded, closed, and
convex, then there exists a unique NBS, which is obtained
by solving the following problem:

maximize
{b∈B}

N∏
i=1

(ui − u0
i ). (6)

Even if U is not convex, the NBS may still exist. Though
a convex utility space makes the bargaining process more
tractable, cases with nonconvex utility spaces are common,
such as the one in this paper.

Under the Pareto-optimal NBS, players maximize the
product of their surplus utilities, obtained by deducting their
actual payoffs with their demands. Intuitively, the surplus
utilities come from the fact that players are willing to coop-
erate to reach an agreement where their minimum demands
are met and the resulting gain/surplus from cooperating is

fairly allocated. Thus, NB has been shown to be a gener-
alized version of the proportionally fair resource allocation
mechanism in [13].

2) Bargaining Formulation for CMIMO Systems: To
achieve fairness in sharing surplus resources (after meeting
minimum rate demands) in a CMIMO network, we propose a
variant bargaining framework of NBS2, called BF-CMIMO.
In BF-CMIMO, nodes are allowed to propose their rate
demands. They then jointly allocate spectrum and optimize
their precoders in a distributed manner. We map links to
bargainers/players. The action of player i is (Ai, T̃i), where
T̃i

def
= {T̃i,k, k ∈ Ai} is the set of precoding matrices

for the set of channels available to i. Player i’s utility
is its transmission rate Ri. We aim at finding a channel
allocation matrix A and sets of precoders for all transmitters
(T̃i,∀i ∈ ΦN ) that solve the following problem:

BF-CMIMO Formulation:
maximize

{∀i∈ΦN ,ai,k,T̃i,k,∀k∈Si}

∑
i∈ΦN

log(
∑
k∈Si

ai,kRi,k − ci)

s.t. C1:
∑

k∈ΨK

ai,kRi,k ≥ ci,∀i ∈ ΦN

C2: tr(T̃H
i,kT̃i,k) ≤ P (k)

mask,i,∀k ∈ Si,∀i ∈ ΦN

C3:
∑

k∈ΨK

tr(T̃H
i,kT̃i,k) ≤ Pmax,∀i ∈ ΦN

C4:
∑
i∈ΦN

ai,k ≤ 1,∀k ∈ Si

C5: ai,k = {0, 1},∀k ∈ Si,∀i ∈ ΦN

(7)

where C1 guarantees the minimum rate requirement for all
CR links, C2 ensures that PU reception is protected from CR
transmissions, C3 is the maximum power constraint of link i,
C4 and C5 convey the exclusive-channel occupancy policy.

Remark 1: The minimum rate requirement ci depends on
the link i’s upper-layer application. Before joining the bar-
gaining process, link i obtains an initial channel assignment
A0
i from its spectrum database that guarantees ci. If ci cannot

be met even with all the channels available for the link in
set Si, link i should either reduce its requested rate or wait
for more spectrum opportunities to become available (to be
added to Si) before bargaining.

Remark 2: The general scenario under consideration (Fig.
1(b) in the paper) differs fundamentally from conventional
resource allocation scenarios. In conventional scenarios, re-
sources are owned by a single entity, who is in charge of
allocating these resources to her users. In our case, resources
may be owned by different players/links and no one controls
the whole system’s resources (to apply traditional fairness
schemes, e.g., max-min). Besides, the ad hoc nature of SUs
requires a distributed bargaining mechanism among them.
Resource allocation in our case is governed by a bargain-
ing/negotiation among SUs.

For a special case (Fig. 1(a) in the paper) where a
spectrum broker can govern the resource allocation process,
conventional fairness schemes such as max-min can be ap-
plicable. However, unlike conventional resource allocation,

2NBS-based resource allocation generalizes proportionally fair resource
allocation [13]. Resources are first allocated to meet players’ minimum
requirements, and the remaining resources are then proportionally allocated
to all players.
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SU links/users who have their own rate demands and re-
sources do not necessarily share the interest in achieving
a fair resource allocation, but rather they are interested in
improving their own utilities/rates (i.e., SUs are rational).
Hence, existing fairness schemes (e.g., max-min) in which
all parties overlook their individual interests to achieve a
common goal of fair resource allocation are not relevant
to our setup. Regarding the comparison with conventional
fairness approaches, it has been shown in [13] that NB (and
thus its variant BF-CMIMO) is a generalized version of
the proportionally fair resource allocation mechanism. It is
well-known (e.g., [22] [23] [24]) that the max-min fairness
approach can achieve better fairness [23] but lower total
throughput than the proportionally fair approach [24]3 (a
better balance between fairness and network throughput).

Problem (7) is combinatorial w.r.t. the binary variables
ai,k’s and the continuous variables in T̃i,k. Even a centralized
solution would be computationally expensive, with a worst-
case exponential complexity. Approximate solutions to binary
programming problems can be obtained by relaxing the
integer constraints (allowing ai,k to be a real number from 0
to 1), followed by sequential fixing. However, relaxing ai,k
does not make (7) convex, as its objective function is not
concave w.r.t. both the channel allocation indicator and the
set of precoders (ai,k, T̃i) (although Ri is concave w.r.t. the
set of precoders T̃i). Moreover, even if a centralized solution
to (7) were to be found, it would still be impractical for
distributed operation.

C. Network Throughput Maximization Formulation
Note that BF-CMIMO serves as a partially cooperative

scheme in which links cooperate given that their minimum re-
quirements are met and the throughput gain from cooperation
is proportionally allocated [13]. For the network throughput
maximization (NET-MAX) formulation, links can choose to
cooperate in a tighter manner (by dropping the proportional
fairness) to maximize the network throughput. This is done
by replacing the objective function in (7) with the total
network throughput:

NET-MAX Formulation:
maximize

{ai,k,T̃i,k,∀k∈Si,∀i∈ΦN}

∑
i∈ΦN

∑
k∈Si

ai,kRi,k

s.t. C1, C2, C3, C4, C5 in (7).
(8)

We emphasize that NET-MAX can be addressed in a cen-
tralized manner by exploiting its zero duality gap, revealed
in [5] [6] [7]. However, this approach does not apply to
distributed scenarios, as explained in Section IV.

Because each channel can be assigned to one link only, the
best strategy for the Tx and Rx of a given MIMO link is to
design their precoders to align M data streams to subchannels
[4] obtained using the singular-value decomposition:

H
(k)
i,i = Ui,kGi,kT

H
i,k (9)

where Ui,k and Ti,k are unitary matrices, and Gi,k is a
diagonal matrix formed from the singular values g(i)

s,k, s =

3“Price of proportional fairness is substantially smaller than the price of
max-min fairness”, page 2 in [24].

1, . . . ,M , of the channel matrix H
(k)
i,i . At the transmitter, we

set T̃i,k to Ti,kP
(i)
k

1/2
[4], where P

(i)
k is a diagonal matrix

whose sth diagonal element P (i)
s,k is the power allocated to

stream s on channel fk of link i. The achievable rate over

channel fk is Ri,k =
M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k).

We can rewrite (7) as follows:

maximize
{∀i∈ΦN ,ai,k,P

(i)
s,k}

∑
i∈ΦN

log(
∑
k∈Si

(ai,k
M∑
s=1

log(1+g
(i)
s,kP

(i)
s,k))−ci)

s.t. C1’:
∑

k∈ΨK

ai,k
M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k) ≥ ci,∀i ∈ ΦN

C2’:
M∑
s=1

P
(i)
s,k ≤ P

(k)

mask,i,∀k ∈ ΨK ,∀i ∈ ΦN

C3’:
∑

k∈ΨK

M∑
s=1

P
(i)
s,k ≤ Pmax,∀i ∈ ΦN

C4’:
∑
i∈ΦN

ai,k ≤ 1,∀k ∈ ΨK

C5’: ai,k = {0, 1},∀k ∈ ΨK ,∀i ∈ ΦN .
(10)

Similarly, problem (8) becomes:

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

∑
k∈Si

ai,k
M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)

s.t. C1’, C2’, C3’, C4’, C5’ in (10)
(11)

III. DISTRIBUTED BARGAINING ALGORITHM

A. Timesharing Interpretation

Problem (10) is NP-hard [5]. Moreover, the decomposition
approach w.r.t. channels in [5] [6] [7] is not possible due
to the product structure of the objective function in (10).
If we relax the binary constraint C5’, its relaxed version
is not convex as the objective function is not concave
w.r.t. (ai,k, P

(i)
s,k). To address (10) and provide a distributed

algorithm, lets consider the following function:

f(ai,k, P
(i)
s,k)

def
=

ai,k
M∑
s=1

log(1+
g
(i)
s,kP

(i)
s,k

ai,k
) if 0 < ai,k ≤ 1

0 if ai,k = 0.
(12)

The idea of introducing function f(ai,k, P
(i)
s,k) is inspired

by [25]. The intuition behind the function can be interpreted
as either frequency/channel sharing (e.g., [26]) or time shar-

ing (as in [12] [25]). In both cases, ai,k
M∑
s=1

log(1+
g
(i)
s,kP

(i)
s,k

ai,k
)

is the throughput of link i if link i is exclusively allocated a
fraction ai,k (either in time or bandwidth) of channel k. When
the channel is exclusively allocated to link i (either in time or
frequency), there is no interference, hence the signal-to-noise
ratio on each data stream (or interpreted on antenna s) is the
product of the subchannel s gain g(i)

s,k (of link i on channel
k) and transmit power divided by the noise-plus-interference
power. Note that in our setup we normalize the noise-
plus-interference power to be one. Under frequency/channel
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sharing (e.g., [26], p. 359), the physical meaning of
P

(i)
s,k

ai,k

is the ratio of the transmit power P (i)
s,k and the noise-plus-

interference power (one per-spectrum-unit times the shared
bandwidth fraction ai,k). Under time sharing (e.g., [12] [25]),
the optimization variable P (i)

s,k (power) is the transmit energy
in one time unit. The ratio of this transmit energy over a time

fraction
P

(i)
s,k

ai,k
can be interpreted as the signal-to-noise-plus-

interference ratio (the transmit power over the time fraction

ai,k is
P

(i)
s,k

ai,k
and the noise-plus-interference power is one).

We rewrite problem (10) to its equivalent form as follows:

maximize
{∀i∈ΦN ,ai,k,P

(i)
s,k}

∑
i∈ΦN

log(
∑
k∈Si

f(ai,k, P
(i)
s,k)− ci)

s.t. C1”:
∑
k∈Si

f(ai,k, P
(i)
s,k) ≥ ci,

C2’, C3’, C4’, C5’ in (10).
(13)

Theorem 1: Problem (10) and problem (13) are equiva-
lent.
Proof: The transformation from problem (10) to problem

(13) is obtained by replacing ai,k
M∑
s=1

log(1+g
(i)
s,kP

(i)
s,k) in (10)

with the function f .
As can be seen, for any binary values (i.e., 0 or 1)

of ai,k (part of any feasible solutions of either problem

(10) or problem (13)), we have ai,k
M∑
s=1

log(1+g
(i)
s,kP

(i)
s,k) =

f(ai,k, P
(i)
s,k). Hence, problems (10) and (13) have identical

objective functions and identical feasible regions. In other
words, all solutions of problem (10) are also solutions of
problem (13) and all solutions of problem (13) are also
solutions of problem (10) or the two problems are equivalent.
�

A relaxed version of (13) can be written as:

maximize
{∀i∈ΦN ,ai,k,P

(i)
s,k}

∑
i∈ΦN

log(
∑
k∈Si

f(ai,k, P
(i)
s,k)− ci)

s.t. C1”, C2’, C3’, C4’ in (13)
0 ≤ ai,k ≤ 1, ∀k ∈ ΨK ,∀i ∈ ΦN .

(14)
The advantage of (13) over (10) is that its relaxed version

(14) is convex w.r.t. (ai,k, P
(i)
s,k). The problem under timeshar-

ing (14) also provides an upper bound on the performance
of the optimal solution of the NP-hard problem (10).

Theorem 2: Problem (14) is convex.
Proof: See Appendix A. �

Problem (14) itself is practically useful if links can be
time-synchronized. In this case, the relaxed variable ai,k can
be interpreted as the fraction of time that link i is allowed to
use channel fk [27] [26]. Under the timesharing assumption,
problem (14) complies with the Nash bargaining theorem;
hence its solution is given by the unique and Pareto-optimal
NBS (14) [8].

Theorem 3: If timesharing is allowed and the minimum
requested rates are within the network capacity region, a
unique NBS exists and is the solution to problem (14).

B. Distributed Optimal Algorithm using Dual Decomposition

In the literature, bargaining games often find applications
in centralized resource allocation (e.g., an OFDMA-based
single-antenna CRN [28], MIMO-OFDMA broadcast sys-
tems [12], channel assignment and power allocation on the
downlink of cellular networks [13], etc.). In this section, we
develop a distributed algorithm that drives the bargaining
process (under timesharing) to the unique and Pareto-optimal
NBS.

Because (14) is convex and its Slater’s conditions hold
[29], strong duality holds, meaning that the solution of the
dual problem also solves the primal problem. The Lagrangian
of (14) is given in (15), where αi,k, γi, βi, and ρk are
nonnegative Lagrangian multipliers, interpreted as prices for
violating the constraints.

The dual problem of (14) is:

DP : minimize
{αi,k,γi,βi,ρk,∀k∈Si,∀i∈ΨN}

D(αi,k, γi, βi, ρk) (17)

where D is the dual function, defined as:

D= max
{ai,k,P (i)

s,k,∀k∈Si,∀i∈ΨN}
L(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk). (18)

To facilitate a distributed solution, we decompose the
Lagrangian of the primal problem in (7) as in (16), where:

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk)

def
= log(

∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci)

+
∑
k∈ΨK

αi,k(−
M∑
s=1

P
(i)
s,k+Pmask,i

(k))+γi(−
∑
k∈ΨK

M∑
s=1

P
(i)
s,k+Pmax)

+βi(
∑
k∈ΨK

ai,k

M∑
s=1

log(1+
g

(i)
s,kP

(i)
s,k

ai,k
)−ci)−

∑
k∈ΨK

ρkai,k.

(19)

To solve (18) for the dual function, each link individually
maximizes Li(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk) to find the optimal

(a∗i,k, P
(i)∗
s,k ) for given prices (αi,k, γi, βi, ρk):

maximize
{ai,k≥0,P

(i)
s,k≥0,∀k∈ΨK}

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk). (20)

The local problem (20) is convex, and hence can be
solved using standard methods like the interior fixed point
method. If a central arbitrator is in place (e.g., a base
station or spectrum database/broker), after solving the local
problem (20), all links report their calculated (a∗i,k, P

(i)∗
s,k )

to the arbitrator so that the dual function is updated as
L(a∗i,k, P

(i)∗
s,k , αi,k, γi, βi, ρk).

Because the dual problem DP is convex [14], the arbitrator
can solve it efficiently for (αi,k, γi, βi, ρk), and then broad-
casts these variables. Each link updates its local problem
(20) with broadcasted Lagrangian variables. It then solves
for (a∗i,k, P

(i)∗
s,k ) again. The process continues until the dual

function converges. This process is illustrated in Fig. 2, and
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L(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) =∑

i∈ΦN

log

(∑
k∈Si

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci

)
+
∑
i∈ΦN

∑
k∈ΨK

αi,k[−
M∑
s=1

P
(i)
s,k + Pmask(i, fk)]

+
∑
i∈ΦN

γi[−
∑
k∈ΨK

M∑
s=1

P
(i)
s,k + Pmax] +

∑
i∈ΦN

βi[
∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci] +

∑
k∈ΨK

ρk(−
∑
i∈ΦN

ai,k + 1)

(15)

=
∑
i∈ΦN

Li(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) +

∑
k∈ΨK

ρk (16)

is referred to as “Arbitrator-Assisted Scheme”.

Fig. 2. Arbitrator-assisted and distributed bargaining schemes.

Next, we design a distributed algorithm for problem (14)
when no central controller/arbitrator is available. The ob-
jective function of the primal problem (14) is continuous
and so its dual function is differentiable w.r.t. its Lagrangian
variables [29]. Hence, the convex DP problem can be solved
with a gradient search algorithm. Specifically, the DP’s
variables at time (t+ 1) can be updated as follows:

α
(t+1)
i,k =

[
α

(t)
i,k−η

∂L

∂αi,k

]+

=

[
α

(t)
i,k−η(−

M∑
s=1

P
(i)(t)∗
s,k +Pmask,i

(k))

]+

γi
(t+1)=

[
γi

(t)−η ∂L
∂γi

]+

=

[
γi

(t)−η(−
∑
k∈ΨK

M∑
s=1

P
(i)(t)∗
s,k +Pmax)

]+

βi
(t+1)=

[
βi

(t) − η ∂L
∂βi

]+

=

[
βi

(t)−η(
∑
k∈ΨK

a
(t)∗
i,k

M∑
s=1

log(1+
g

(i)
s,kP

(i)(t)∗
s,k

a
(t)∗
i,k

)−ci)

]+

ρk
(t+1)=

[
ρk

(t) − η ∂L
∂ρk

]+

=

[
ρk

(t)−η(−
∑
i∈ΦN

a
(t)∗
i,k +1)

]+

(21)

where η > 0 is a sufficiently small step-size 4and (.)+

denotes the projection onto the nonnegative orthant.
Observe that the Lagrangian variables αi,k, γi, and βi

can be calculated and updated using only local information
of link i (the fraction of time ai,k that link i tentatively
communicates on channel fk and the power allocated to
stream s on channel fk, P (i)

s,k). Moreover, the price ρk is
obtained if other links j broadcast their tentative time fraction
aj,k on channel fk. Our distributed mechanism is shown in
Algorithm 1 and illustrated in Fig. 2. The convergence and
optimality of Algorithm 1 is claimed as in the next theorem.

Algorithm 1 Distributed Bargaining Algorithm for Comput-
ing Optimal Timeshares and Precoders of Link i at Time
(t+ 1):

1: Input: a=(a
(t+1)
1,k , ..., a

(t+1)
i−1,k, a

(t)
i+1,k, ..., a

(t)
N,k), ∀k ∈ ΨK

If t+ 1 = 0 (beginning iteration), set a = (1/N, . . . , 1/N)

2: Initialize: T̃
(t+1)
i ← T̃

(t)
i

3: Computation:
4: ∀k ∈ ΨK , compute transmit and receive precoders (Ti,k,

UH
i,k), and stream gains g(i)s,k using (9).

5: Update local Lagrangian variables α
(t+1)
i,k , γi(t+1), and

βi
(t+1) using (21).

6: Update price k, ρ(t+1)
k using (21) and timeshares a

(t)∗
j,k

from links j, j 6= i.
7: Update Li(ai,k, P

(i)
s,k, α

(t+1)
i,k , γi

(t+1), βi
(t+1), ρ

(t+1)
k ) (19).

8: Solve problem (20) for (a
(t+1)∗
i,k , P

(i)(t+1)∗
s,k ).

9: Broadcast: tentative timeshares a(t+1)∗
i,k , ∀k ∈ ΨK .

10: RETURN T̃
(t+1)
i,k = Ti,k(P

(i)(t+1)∗
k )1/2, ∀k ∈ ΨK

Theorem 4: For a sufficiently small η > 0, Algorithm
1 converges to the globally optimal solution (Pareto-optimal
NBS) of problem (14).
Proof: See Appendix B. �

It is worth noting that besides its optimality and distributed
implementation, Algorithm 1 greatly reduces the computa-
tional time for large networks (large N ). Instead of dealing
with N(MK+K) variables in the centralized problem (14),

4For a gradient-based search, there are various ways to select its step-size
to ensure the algorithm’s convergence (e.g., constant, diminishing step-size,
or using Armijo rule [29]). For instance, Proposition 1.2.3 in [29] states
conditions on a constant step-size η to guarantee the search’s convergence.
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Algorithm 1 involves MK +K variables. In addition to its
application in timesharing scenarios, the solution of problem
(14) also sheds light on how to derive a distributed solution
to the original problem (7), as explained next.

C. Distributed Bargaining Algorithm for Problem (7)

The optimal solution of the relaxed problem provides
information on which links wish to access which channels
and for what fraction of time. In other words, the preferences
of different links over the pool of available channels are
revealed. In this section, we exclusively assign a channel to
a link by considering preferences of all other links on that
channel.

The gradients at the convergence point of Algorithm 1
must be zero if the globally optimal solution to (14) is an
interior point of the feasible region. If the solution is a
boundary point, the gradient at this point must be positive
(negative) along the outwards (inwards) direction of the
interior of the feasible region [29]. This fact is conveyed in
Equations (22) and (23). For (22) and (23) to be defined at
ai,k = 0, it must be the case that P (i)

s,k = 0,∀s = {1, . . . ,M}.
Let ∆i be the amount that the allocated rate for link i (under
timesharing) exceeds its demand ci:

∆i
def
=
∑
k∈ΨK

(
ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)

)
− ci (24)

When P (i)
s,k > 0, (22) implies:

(
αi,k+γi

)
(

1

g
(i)
s,k

+
P

(i)
s,k

ai,k
) =

1

∆i
+βi,∀s = 1, . . . ,M. (25)

As the RHS of (25) does not change for all data streams
1 ≤ s ≤ M , link i allocates more power on stream
(s, k) with higher gain g

(i)
s,k, and vice versa. This suggests

a water-filling-like algorithm for link i to allocate power on
channel k. Plugging 1/∆i from (25) into (23) and after some
manipulations, we get:

∂L

∂ai,k
=

{
Fi,k − ρk if ai,k > 0
−ρk if ai,k = 0

(26)

where

Fi,k
def
=

(
1

∆i
+βi

)M∑
s=1

log

(
1+

g
(i)
s,kP

(i)
s,k

ai,k

)
−
αk,i+γi

ai,k

M∑
s=1

P
(i)
s,k.

(27)

Recalling (23), (26) suggests that at the optimal solution,
link i should exclusively occupy channel fk if Fi,k > ρk; oth-
erwise, link i should timeshare the channel with other links
or not use fk if Fi,k < ρk. Note that ρk is interpreted as the
price of using fk, which is “flat” for all buyers/links. Fi,k can
be interpreted as the “payoff” that link i gets from ”buying”
channel k. If a channel k is to be exclusively allocated to no
more than one link, then the link with the highest Fi,k should
get it. This means the most efficient/needy link (of channel
k) wins the channel. Formally, we have the following rule to

select the optimal link for fk:

ai′,k =

{
1 if i′ = arg max

∀i∈ΦN

Fi,k

0 otherwise
(28)

To execute the above rule in a distributed manner, each link
i broadcasts a vector Fi

def
= {Fi,1, . . . , Fi,K}. After receiving

Fj from every neighbor j, link i can autonomously determine
the set of channels Ai it should select (when comparing Fi,k
of different links, if a tie happens, we randomly pick any of
the links).

Economical Interpretation: Consider Fi,k in (27). The
first term is the weighted rate that link i can achieve over
channel k. The second term is the weighted power that link i
invests on channel k. Hence, the “payoff” Fi,k is indeed the
weighted rate that link i gets from channel k discounted by
its allocated (weighted) power. We can observe that the unit
price for the discounted power is the total price of violating
the PU protection and maximum power budget constraints
divided by the timeshare

αk,i+γi
ai,k

. For the same weighted
power and the same scalar ( 1

∆i
+ βi), the higher the channel

gain g
(i)
s,k of link i on channel k, the more likely that link

i will win the channel. However, if two links have identical
gains on channel k and the same weighted power, then the
link that has a less amount of extra rate ∆i (compared with
its demand) is likely to win the channel. This fact ensures
fair resource allocation. We will see later in Section IV-C that
∆i does not play any role if we purely maximize network
throughput.

After knowing its set of allocated channels Ai, it is
necessary for link i to re-solve the power allocation problem
to ensure optimality and QoS satisfaction, as follows:

maximize
{P (i)

s,k≥0,∀s=1,...,M,∀k∈Ai}

∑
k∈Ai

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)

s.t.
∑
k∈Ai

M∑
s=1

P
(i)
s,k ≤ Pmax

M∑
s=1

P
(i)
s,k ≤ P

(k)

mask,i, ∀k ∈ Ai.

(29)
Problem (29) is convex and hence can be solved efficiently
using standard methods. In fact, (29) belongs to the class of
generalized water filling problems with multiple water levels
(one at each channel), which can be solved efficiently with
the algorithms in [30].

If the optimum solution to (29) does not meet the rate
demand ci, link i needs to inform others through a Real-
location Request message (RRM) and increases its bargain
to compete for additional channels, i.e., raise its “payoff”
vector Fi in (27). Since βi is the price of violating the
minimum rate constraint C3’ in (10), it is intuitive to raise
βi by a sufficiently small step-size δ so that i wins only
one additional channel l at a time. Algorithmically, δ can be
found through a binary search. In our case, we can derive δ
and l analytically with no iterations using Algorithm 2.

The idea of Algorithm 2 is to first find the vector of
winning “payoffs” (Fmax) for all channels and then see how
far the “payoff” vector Fi of link i is from these values
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∂L

∂P
(i)
s,k

=
g

(i)
s,k( ∑

k∈ΨK

ai,k

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)− ci

)
(1 +

g
(i)
s,kP

(i)
s,k

ai,k
)

− αi,k − γi + βi
g

(i)
s,k

(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

{
= 0 if P (i)

s,k > 0

< 0 if P (i)
s,k = 0

(22)

∂L

∂ai,k
=

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)−ai,k

g
(i)
s,k

P
(i)
s,k

a2
i,k

(1+
g
(i)
s,k

P
(i)
s,k

a
i,k

)


( ∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)− ci

) +βi

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)−ai,k

g
(i)
s,kP

(i)
s,k

a2i,k

(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

−ρk
= 0 if 0 < ai,k < 1
> 0 if ai,k = 1
< 0 if ai,k = 0

(23)

Algorithm 2 Finding increment δ for the price of violating
the rate demand of link i (problem (7)) and channel l that i
is going to acquire:

1: Input: Fi, ∀i ∈ ΦN

2: Output: δ and l

3: Υi,k
def
=

M∑
s=1

log(1+
g
(i)
s,k

P
(i)
s,k

ai,k
)

Fmax
def
= {Fmax(1), . . . , Fmax(K)} where Fmax(k) =

max{Fi,k}, ∀i ∈ ΦN .
Θi

def
= {Θi,1, . . . ,Θi,K} with Θi,k = Fmax(k)− Fi,k.

4: Sort Zi
def
= Sort(Θi) in ascending order.

5: Let Zi(m) is the smallest positive element in Zi.
Set: δ = (Zi(m)+Zi(m+1))

2
.

Channel that link i is going to acquire is the index of
Zi(m) in Θi before sorting.

6: RETURN: δ and channel index l.

(vector Θi). Recalling Equation (27), if link i wants to win
channel k that is currently not allocated for i, then δ must
be set to be strictly greater than Θi,k

Υi,k
. However, link i wants

to request only one channel at a time. For that, we sort the
elements of Θi in an ascending order, and set δ to the average
of the two smallest positive elements.

Using its updated price, βi = βi + δ, link i recalculates
the “payoff” vector Fi. Consequently, it broadcasts a Real-
location Request message (RRM), containing the index of
channel l that i would like to acquire and its updated Fi.
Upon hearing this message, all links record the new Fi. Then,
the current “owner” of channel l (say link j) excludes l from
its set of allocated channels Aj . Both links i and j re-solve
the power allocation problem (29) and check if their demands
are met. The process of increasing the bidding price βi to
bargain for additional channels continues until all links get
their requested rates.

As aforementioned, we assume that an admis-
sion/congestion control mechanism is in place to ensure
that the initial channel assignment A0

i guarantees the rate
demands of all links. In other words, the problem (7)
is always feasible. Hence, the above bidding process is
guaranteed to stop. If no RRM is heard for a given time
duration (set as Timer), all links start transmitting on their

selected channels. The channel and power allocation for
problem (7) is summarized in Algorithm 3.

Algorithm 3 Distributed Bargaining Algorithm to Design
Precoders and Allocate Channels for Node i at Time (t+ 1):

1: Execute Algorithm 1 (until convergence)
2: Payoff vector computation Fi (using (27))
3: Enter channel allocation phase:

Link i broadcasts its payoff vector Fi. Then, sets Timer
4: while T imer not expired do
5: Upon receiving Fj from neighbors j, update the set of

allocated channels Ai using (28).
6: Execute the power allocation (29) and check if Ri ≥ ci
7: if Ri < ci then
8: Compute δ and the channel index l
9: Set βi = βi+δ and update Fi using (27) to acquire

(additional) channel l
10: Broadcast the new Fi, RRM and reset Timer
11: end if
12: If a RRM is heard, reset Timer
13: end while
14: RETURN T̃

(t+1)
i,k = Ti,k(P

(i)(t+1)∗
k )1/2,∀k ∈ Ai

Remark 3: The network overhead involved in Algorithm
3 is NK scalar values per iteration (K is the size of
the payoff vector per link). Specifically, to bargain/bid for
channels, each transmitting SU only needs to broadcast its
payoff/valuation vector for channels that the SU is competing
for. For a reasonable network size, this overhead does not
exceed 100 bytes and can easily be amortized over successive
data transmissions. For large network, the overhead can be
further reduced (at the expense of throughput) by allowing
links to skip updating payoff vectors if the change is less than
a given threshold. Regarding the algorithm’s complexity, each
SU needs to solve a convex problem using any conventional
solver in polynomial time. We assume secondary users are
truthful and cooperative when broadcasting their “payoffs”.
Dealing with untruthful users is out of the scope of this work.

IV. NETWORK THROUGHPUT MAXIMIZATION

In this section, we develop a distributed algorithm for NET-
MAX, as defined in Section II-C. First, we use the zero-
duality gap [5] [6] [7] to derive a centralized solution, which
can serve as a performance benchmark.
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L(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) =

∑
k∈ΨK

∑
i∈ΦN

ai,k

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k) +

∑
k∈ΨK

∑
i∈ΦN

αi,k[−
M∑
s=1

P
(i)
s,k + P

(k)

mask,i]

+
∑
k∈ΨK

∑
i∈ΦN

γi[
Pmax

K
−

M∑
s=1

P
(i)
s,k] +

∑
k∈ΨK

∑
i∈ΦN

βi[ai,k

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)− ci

K
] +

∑
k∈ΨK

ρk(−
∑
i∈ΦN

ai,k + 1)

(30)

=
∑
k∈ΨK

Lk(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) (31)

A. Centralized Algorithm with Zero-duality Gap
The Lagrangian function of the NET-MAX problem (11)

is written in (30), and is decomposed w.r.t. channels as in
(31) with:

Lk(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk)

def
=
∑
i∈ΦN

ai,k

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)

+
∑
i∈ΦN

αi,k[−
M∑
s=1

P
(i)
s,k + P

(k)

mask,i]+
∑
i∈ΦN

γi[
Pmax

K
−

M∑
s=1

P
(i)
s,k]

+
∑
i∈ΦN

βi[ai,k

M∑
s=1

log(1 + g
(i)
s,kP

(i)
s,k)− ci

K
] + ρk(−

∑
i∈ΦN

ai,k+1).

(32)

As the duality gap vanishes for a large number of channels,
one can solve (11) by solving K subproblems for maximizing
Lk(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk). Since a channel k cannot be

allocated to more than one link, it is allocated to a link i that
maximizes Lk(ai,k, P

(i)
s,k, αi,k, γi, βi, ρk) among all links [7].

B. Dual Decomposition with Timesharing
Following a similar procedure to the one used to convert

problem (7) to (13) in Section III-A, the problem below is
equivalent to the original NET-MAX problem (11):

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

∑
k∈Si

ai,k
M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

s.t. C1’, C2’, C3’, C4’, C5’ in (10).
(33)

By relaxing the variables ai,k’s, we end up with the
following formulation for the optimal timesharing version of
NET-MAX:

maximize
{ai,k,P (i)

s,k}

∑
i∈ΦN

∑
k∈Si

ai,k
M∑
s=1

log(1 +
g
(i)
s,kP

(i)
s,k

ai,k
)

s.t. C1’, C2’, C3’, C4’in (10)
0 ≤ ai,k ≤ 1, ∀k ∈ Si,∀i ∈ ΦN .

(34)

Beside its practical application, (34) also provides an upper
bound on the performance of the optimal solution of the
original NET-MAX.

Theorem 5: Problem (34) is convex.
The proof of the above theorem is similar to that of

Theorem 2, and is omitted for brevity. Using a similar dual

decomposition as in Section III-B, we derive a distributed
algorithm that attains the globally optimal solution of (34).
Specifically, the transmitter of link i solves the following
local problem (for simplicity, we use the same notation as in
Section III):

maximize
{ai,k≥0,P

(i)
s,k≥0,∀k∈Si}

Di(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk) (35)

where

Di(ai,k, P
(i)
s,k, αi,k, γi, βi, ρk)=

∑
k∈ΨK

ai,k

M∑
s=1

log(1+
g

(i)
s,kP

(i)
s,k

ai,k
)

+
∑
k∈ΨK

αi,k(−
M∑
s=1

P
(i)
s,k+P

(k)

mask,i)+γi(−
∑
k∈ΨK

M∑
s=1

P
(i)
s,k+Pmax)

+ βi(
∑
k∈ΨK

ai,k

M∑
s=1

log(1 +
g

(i)
s,kP

(i)
s,k

ai,k
)− ci)−

∑
k∈ΨK

ρkai,k.

(36)

The Lagrangian multipliers (prices) are updated using
the same rule in (21) (since (34) and (14) have identical
constraints).

Theorem 6: If each link solves problem (35), updates
Lagrangian multipliers using (21), and broadcasts its tentative
timeshare, then the network converges to the optimal solution
of the NET-MAX (34) under timesharing.
Proof: Similar to the proof of Theorem 4. �

C. Distributed Algorithm for NET-MAX

Note that if one decomposes (8) w.r.t. various links in its
dual domain to obtain a distributed algorithm, the resulting
subproblems in the dual domain still face the same com-
binatorial selection of channels as in the primal problem.
Instead, we develop a distributed (suboptimal) algorithm for
the problem (8) using the optimal solution of the above
relaxed problem.

Using the arguments in Section III-C, one can compute a
“payoff” vector for NET-MAX, denoted by Yi,k, which is
analogous to the role of Fi,k for BF-CMIMO:

Yi,k
def
= (1 + βi)

M∑
s=1

log

(
1 +

g
(i)
s,kP

(i)
s,k

ai,k

)
−αi,k + γi

ai,k

M∑
s=1

P
(i)
s,k.

(37)
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Channels are then exclusively allocated as follows:

ai′,k =

{
1 if i′ = arg max

∀i∈ΦN

Yi,k

0 otherwise
(38)

The economical interpretation of the above rule resembles
that of BF-CMIMO. However, the weight factor of the
achievable rate (1 + βi) under NET-MAX differs from that
of BF-CMIMO (1/∆i + βi). When maximizing network
throughput and ignoring fairness aspects, the amount of
extra rate ∆i does not play any role in channel bargain-
ing/assignment. Under NET-MAX, regardless of how much
rate link i gets, it wins a given channel if it is the most
efficient user of that channel.

Now, links follow the same procedure of re-solving the
power allocation problem (29), checking if all rate demands
are met, and sending RRM if necessary, as in Algorithm 3.

V. NUMERICAL RESULTS

We simulated a CMIMO network in which nodes are
randomly distributed on a square field of length 100 m. The
following simulation parameters are in accordance with FCC
specifications for Wireless LANS (FCC Section 15.247 [31]).
The free-space attenuation factor is 2 and channel bandwidth
is 16 MHz. We set Pmax = 1 W and Pmask(fk) = 0.5 W
∀fk. Noise floor (around -174 dBm) plus PUs interference
is −100 dBm/Hz. Without loss of generality, we set the rate
demands of all links to 2 bits/s/Hz. The spreading angles
of arriving signals vary from −π/5 to π/5, assuming a
rich-scattering environment for MIMO (multiplexing gain)
operation. All plots are obtained from taking the average of
20 simulations runs. In each run, the node location, channel
matrices are randomly regenerated.

Fig. 3. Convergence of BF-CMIMO under timesharing (TS).

To evaluate the optimality and convergence of the dis-
tributed algorithms under timesharing (TS), we consider a
network of 10 links, 15 channels, and 4 antennas per node.
To capture spectrum heterogeneity, we assume channels i,
(i+1), (i+2) are not available to link i. Figures 3 and 4 depict
the dual functions and network throughput vs. iterations of
the two distributed algorithms for BF-CMIMO and NET-
MAX under TS, respectively. The distributed algorithm of
TS BF-CMIMO converges to the optimal centralized solution
after 18 iterations. Similarly, the distributed algorithm of
TS NET-MAX converges to the optimal network throughput
under the centralized solution after 27 iterations. Using the

Fig. 4. Convergence of NET-MAX under timesharing (TS).

approach in [32], one can quantify the convergence speed
of the two distributed algorithms. Because of its logarithmic
objective function, the distributed algorithm of BF-CMIMO
converges faster than that of NET-MAX. Under exclusive
channel allocation (no TS), we observed that the heuristic
algorithms for BF-CMIMO and NET-MAX often need less
than 3 additional iterations to reallocate channels.

Fig. 5. Distributed BF-CMIMO and NET-MAX algorithms vs. optimal
solutions (via exhaustive search).

To compare the performance of the heuristic algorithms
for BF-CMIMO and NET-MAX with their optimal solutions
under the exclusive channel occupancy policy, we run an
exhaustive search on a small network of 3 links, 8 channels,
and 2 antennas per node. Note that due to the excessive
computational complexity prohibits of exhaustive search, we
are not able to plot the performance of the exhaustive search
vs. the number of antennas/users. However, the performance
of the proposed approach (with much less complexity) have
been plotted vs. the number of antennas/users in Figures 8,
9, 10, 11, 12, 13. Note that, in these figures, the performance
of the proposed approach is compared with that of the time-
sharing algorithms which offer upper-bounds for those of the
exhaustive search.

Fig. 5 shows that the objective function of BF-CMIMO
under the proposed algorithm is 6.66, compared with 7.04
for the optimal solution. Similarly, the total throughput
under the NET-MAX distributed algorithm is 41.04 bits/s/Hz,
compared with 42.48 bits/s/Hz for the optimal solution of
NET-MAX. The proposed algorithm achieves 95% of the
optimal values.

Figures 6 and 7 compare the network throughput of
NET-MAX under our distributed algorithm, the zero-duality
(centralized) based algorithm (subsection IV-A), and an ex-
haustive search solution. For a small number of channels
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Fig. 6. Non-zero duality gap in NET-MAX for a small number of channels
(K=8).

Fig. 7. Zero-duality based (centralized) algorithm with large number of
channels (K=15) vs. (proposed) distributed NET-MAX.

(K = 8), even in a centralized manner, the zero-duality-based
algorithm does not converge to the optimal solution, obtained
via exhaustive search (Figure 6). However, the proposed
distributed algorithm achieves higher throughput than the
zero-duality-based and its performance is close to that of
the optimal solution. When K is large, e.g., K = 15, the
zero-duality-based algorithm achieves higher throughput than
the proposed distributed algorithm. This suggests that the
zero-duality-based one may converge to the optimal solution
(thanks to zero-duality gap). However, the gap between
distributed algorithm and the the zero-duality-based one is
marginal.

Figures 8 and 9 respectively show the network throughput
and Jain’s fairness index5 vs. K a network of 5 links and
2 antennas per node. As can be seen, for a small K, the
distributed NET-MAX algorithm outperforms the centralized
zero-duality based algorithm in terms of network throughput.

Figure 10 depicts the total network throughput vs. the
number of links under BF-CMIMO and NET-MAX, with
or without TS (K = 15, M = 2). For all algorithms, the
throughput increases with the number of links (N ). This is
partially due to the higher link and frequency diversity gains.
By directly maximizing the network throughput, the TS NET-
MAX distributed algorithm achieves the highest throughput.
The TS BF-CMIMO distributed algorithm is the second best
in terms of throughout. It achieves about 87% of the TS NET-
MAX throughput, in these examples. When channels are

5Jain’s fairness index of N links is a fairness indicator, defined as
J (t1, t2, . . . , tN ) =

(
∑N

i=1 ti)
2

N·
∑N

i=1 ti2
, where ti is the throughput for link i.

Fig. 8. Throughput vs. number of channels.

Fig. 9. Jain’s fairness index vs. number of channels.

exclusively allocated, the distributed algorithm of NET-MAX
achieves 78% of its upper bound obtained by TS NET-MAX.
The distributed algorithm of BF-CMIMO when timesharing
is not allowed achieves 80% of the throughout that can be
obtained under NET-MAX.

Figure 11 depicts Jain’s fairness index of the four dis-
tributed algorithms (BF-CMIMO and NET-MAX with and
without TS) vs. the number of links with K = 15 and
M = 2. Algorithms that rely on NB (with or without TS)
achieve significantly better fairness than those of NET-MAX.
As N increases, fairness under NET-MAX (with or without
TS) decreases. However, BF-CMIMO algorithms maintain
quite stable fairness for different network sizes. This is
because under BF-CMIMO, channels (or their timeshares) are
allocated while accounting for the amount of extra rate ∆i.
Jain’s index for the distributed algorithm under BF-CMIMO
with exclusive channel allocation achieves 81% of its upper
bound obtained under TS.

Figures 12 and 13 depict the network throughput and Jain’s
fairness index vs. the number of antennas per node for a
network of 5 links and 15 channels. As expected, in Fig. 12,
the network throughput under the three algorithms increases
w.r.t. the number of antennas per node. However, in Fig. 13,
with a larger antenna array, the NET-MAX achieves slightly
lower Jain’s fairness index. This is because with a higher
number of antenna per node, the throughput per link increases
and that exacerbates the unfairness among links.

VI. CONCLUSIONS

In this paper, we developed distributed algorithms to
jointly allocate channels (under the exclusive channel occu-
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Fig. 10. Network throughput under BF-CMIMO and NET-MAX, with and
without TS.

Fig. 11. Jain’s fairness index under BF-CMIMO and NET-MAX, with and
without TS.

Fig. 12. Throughput vs. number of antennas.

Fig. 13. Jain’s fairness index vs. number of antennas.

pancy), and optimize power allocation and antenna patterns
(through precoding matrices) for cognitive MIMO networks.
The proposed algorithms allow cognitive MIMO links to
propose their rate demands, cooperate and bargain to get their
channel assignment, and optimize their precoders to either
maximize fairness or network throughput. Under timesharing,
the distributed algorithms were proved to converge to their
network-wide globally optimal solutions. The algorithms
under timesharing revealed preferences of different links on a
channel that guide heuristic algorithms to allocate channels
under the exclusive-channel occupancy policy. Simulations
indicated that these heuristic algorithms perform very close to
their optimal solutions. The proposed bargaining framework
significantly improves user fairness with moderate throughput
reduction. We believe this work provides a theoretical foun-
dation for integrating MIMO spatial multiplexing capability
into the next-generation DSA networks. Our future work
will focus on designing protocols that incentivize links to
broadcast their true timeshares.
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APPENDIX A
PROOF OF THEOREM 2

First, using L’Hospital’s rule, one can verify that
f(ai,k, P

(i)
s,k) is continuous w.r.t. ai,k at ai,k = 0. Next,

let v(ai,k, P
(i)
s,k)

def
=
∑
k∈Si

f(ai,k, P
(i)
s,k) then v(ai,k, P

(i)
s,k) is a

concave function w.r.t. (ai,k, P
(i)
s,k), as it is the summation

of perspective functions [14] of the logarithmic concave
functions log(1 + x) (the perspective function of a concave

function is concave [14]). Hence, constraint C1” defines a
convex region. Consequently, the feasible region of problem
(14) is an intersection of half-spaces and convex regions, and
is hence convex w.r.t. (ai,k, P

(i)
s,k).

The objective function is the summation of N functions
g(ai,k, P

(i)
s,k) where:

g(ai,k, P
(i)
s,k)

def
= log(

∑
k∈Si

f(ai,k, P
(i)
s,k)− ci).

We will show that g(ai,k, P
(i)
s,k) is concave w.r.t.

(ai,k, P
(i)
s,k). Let’s rewrite g as a composite function g =

h(v(ai,k, P
(i)
s,k)) where h(x)

def
= log(x − ci). We know that

v(ai,k, P
(i)
s,k) is a concave function w.r.t. (ai,k, P

(i)
s,k). Addi-

tionally, h is a nondecreasing function. Hence, the composite
function g = h(v(ai,k, P

(i)
s,k)) is concave [14]. �

APPENDIX B
PROOF OF THEOREM 4

Algorithm 1 is a form of the solution to the Network
Utility Maximization (NUM) problem in [33] and [34].
Following the same procedure in [33] and [34] to establish
the convergence of Algorithm 1 can be very cumbersome
since our utility function has a much more complicated form
than those in [33], [34]. Here, we present an alternative proof.
Specifically, we need to show:

1) The distributed algorithm converges.
2) The converged point is the globally optimal solution of

the problem (14).
For the convergence, we prove that the dual function

D(αi,k, γi, βi, ρk) is nonincreasing and bounded from below.
It is clear that the dual function is always lower-bounded by
the objective function of the primal problem which again
can be bounded from below by its value at any feasible
solution. Next, consider the difference of the dual function
between two consecutive iterations (α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k ) and

(α
(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k ):

D(α
(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k )−D(α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )

= L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k )

− L(a
(t)
i,k, P

(i)(t)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )

(39)

= L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k )

− L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )

+ L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t+1)
i,k , γ

(t)
i , β

(t)
i , ρ

(t)
k )

− L(a
(t)
i,k, P

(i)(t)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )

≤ −η[
∂L

∂α1,1
, . . . ,

∂L

∂αN,K
,
∂L

∂β1
, . . . ,

∂L

∂βN
, . . . ,

∂L

∂ρ1
, . . . ,

∂L

∂ρK
]T

×[
∂L

∂α1,1
, . . . ,

∂L

∂αN,K
,
∂L

∂β1
, . . . ,

∂L

∂βN
, . . . ,

∂L

∂ρ1
, . . . ,

∂L

∂ρK
]+0

≤ 0
(40)
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The inequality follows from two facts. First, L is con-
vex w.r.t. (αi,k, γi, βi, ρk) and for sufficiently small step-
size η, the descent direction update in (21) always re-
duces L while fixing (ai,k, P

(i)
s,k). Second, (a

(t)
i,k, P

(i)(t)
s,k )

are maximizers of L(a
(t)
i,k, P

(i)(t)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k ) (found

from solving N parallel local problems (20) while fixing
(α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )).

Next, we show that the converged point meets the K.K.T.
conditions of the convex problem (14), hence it is the globally
optimal solution. From inequality (40), at the converged
point, the equality takes place. Thus,

L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k )

= L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k )

(41)

and

L(a
(t+1)
i,k , P

(i)(t+1)
s,k , α

(t+1)
i,k , γ

(t)
i , β

(t)
i , ρ

(t)
k )

= L(a
(t)
i,k, P

(i)(t)
s,k , α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k ).

(42)

Since L is concave w.r.t. (ai,k, P
(i)
s,k) (while fixing

(αi,k, γi, βi, ρk)) and convex w.r.t. (αi,k, γi, βi, ρk) (while
fixing (ai,k, P

(i)
s,k)), (41) and (42) happen if and only

if the gradient of L(a
(t+1)
i,k , P

(i)(t+1)
s,k , αi,k, γi, βi, ρk)

at (α
(t+1)
i,k , γ

(t+1)
i , β

(t+1)
i , ρ

(t+1)
k ) vanishes and

(a
(t+1)
i,k , P

(i)(t+1)
s,k ) are also maximizers of

L(ai,k, P
(i)
s,k, α

(t)
i,k, γ

(t)
i , β

(t)
i , ρ

(t)
k ). In other words:

∂L

∂αi,k
=
∂L

∂βi
=

∂L

∂ρk
=

∂L

∂ai,k
=

∂L

∂P
(i)
s,k

= 0

∀i ∈ ΦN ,∀k ∈ ΨK , and s = {1, . . . ,M}.
(43)

This is exactly the K.K.T. conditions of the convex problem
(14). �
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