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Abstract—We are interested in addressing a fundamental question:
what are conditions under which an ad hoc cognitive radio MIMO
(CMIMO) network can support a given rate-demand profile, defined as
the set of rates requested by individual links? From an information
theoretic view, a rate profile can be supported if it is within the
network capacity region. However, the network capacity region of
interfering MIMO networks is essentially unknown. In dynamic
spectrum access, the problem is even more challenging due to the
dynamics of primary/legacy users (PUs), resource constraints, and
the heterogeneity of opportunistic spectrum (i.e., the set of available
channels varies from one to another). Considering a non-centralized
setup, we address the above question in a noncooperative game
framework where each CMIMO link independently optimizes its
spectrum, power allocation, and MIMO precoders to meet its rate
demand. We derive sufficient conditions for the existence of a NE are
derived. These conditions establish an explicit relationship between the
rate-demand profile and interference from PUs, CMIMO network’s
interference, and CMIMO nodes’ power budget. We also show that a
NE, if exists, is unique. Qur results help to characterize the network
capacity region of CMIMO networks.

Index Terms—Cognitive radio, MIMO, Nash equilibrium, noncoop-
erative game, rate demand, interfering network capacity.

I. INTRODUCTION

Consider an interfering CR MIMO (CMIMO) network in which
each link wishes to minimize its transmit power while meeting
a given rate demand. The problem can be modeled as a nonco-
operative game, referred to as power minimization (PM) game.
Such a PM game is different from the rate maximization (RM)
game (e.g., [1] [2] [3]), in which nodes individually maximize
their rates. Whereas the players’ strategic spaces in a RM game
are independent, these strategic spaces exhibit complex coupling in
a PM game. This is because the strategic space of a link in the RM
game is defined by its available resources, e.g., power, available
channels, antennas, etc., which do not depend on other players’
actions. In contrast, in a PM game with rate constraints, the strategic
space of a player is not only shaped by its resources but also its
achievable rate (to meet the rate demand), which is a function of
other players’ actions. The interdependence of the strategic spaces
makes the analysis of PM games much more challenging than RM
games.

As an example, it can be proved that the RM game always
admits a NE [2]. By contrast, the PM game may not have a NE
(e.g., the rate demands are beyond the network capacity region).
Moreover, under resource constraints (e.g., power budgets), the
strategic space of a player under the PM game can be empty (e.g.,
when the power budget is not sufficient to support the rate demand
given interference from other transmitters). In the context of a
CR network, the dynamics of primary users (PUs) also affect if a
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requested CR rate can be met or not. It is this possible emptiness of
strategic spaces that prevents us from directly applying techniques
used to study the RM games of MIMO systems to our setup. The
projection method (onto a nonempty compact and convex space) in
the context of fixed point theory [4] and the variational inequality
theory [3] [5] have been instrumental in tackling the RM game.
However, these techniques require nonempty strategic spaces.

Another challenge is the spectrum heterogeneity of CR com-
munications. Due to the spatiotemporal variations of spectrum
opportunities, a channel that is temporarily available for one CR
user may not be available to other CR users. This leads to a CR
network with heterogeneous spectrum sharing. Traditional RM and
PM games [1] [2] [3] [6] [7] often assume homogeneous spectrum
sharing setting in which the set of idle channels are the same at
all nodes.

The goal of this paper is to investigate the conditions under which
a given rate profile can be supported by an interfering CMIMO
network with heterogeneous spectrum sharing. Using game theory,
recession analysis, and variational inequality theory, we derive
sufficient conditions that guarantee a given rate profile. Intuitively,
these conditions are met if the CRs’ power budget is sufficient
enough to satisfy the rate demands, the requested rates are not too
high to harm PU receptions, the PUs’ interference to CRs is not
too strong, and the CR interference is not too severe. The four
conditions are quantified in a way that allows a node to decide its
appropriate rate. We also show that if a NE exists for the underlying
PM game, it must be unique. Interestingly, by removing resource
constraints and set the number of antenna to 1, our sufficient
conditions become necessary and reduce to those in [8] [9].

Throughout the paper, (.)* denotes the conjugate of a matrix,
() denotes its Hermitian transpose, tr(.) denotes its trace, |.|
denotes its determinant, ||.|| denotes the Euclidean (or Frobenius)
norm, and (.)7 denotes the transpose. eig, . (.), eig,.,(.), and
diag,(.) indicate the maximum, minimum eigenvalue, and the
diagonal element (s,s) of a matrix, respectively. Matrices and
vectors are bold-faced.

II. PROBLEM STATEMENT
A. System Model

Consider a multi-channel CMIMO network that coexists with
several PU networks in a rich-scattering environment (to facil-
itate. MIMO spatial multiplexing). The network consists of N
transmitter-receiver pairs (links), denoted by ® = {1,2,...,N}.
Each CR node is equipped with M antennas. The set of temporarily
idle channels at link 7 is denoted by S;. In general, S; # S; for two
links ¢ and j. The network’s opportunistic spectrum is the union of
available-channel sets from all links, consisting of K orthogonal

(not necessarily contiguous) channels with central frequencies fi,
def

N
f2, -+ fK, denoted by ¥p = {1,2,..., K} = ‘91 S;. Each CR



1 can simultaneously communicate over multiple frequencies (e.g.,
using non-contiguous OFDM).

The transmitter of a CR link can send up to M independent data
streams over each channel. Let xgﬁ) be an M x 1 column vector,
consisting of M information symbols (from M data streams), sent
on link u using the channel with central frequency fj (hereon also
referred to as channel fj, for short). The radiation pattern and power
allocation for the M streams of link v on channel f; are determined
by its precoding matrix ’i‘gk) The actual transmit vector on channel
fx at the radio interface is ’i‘( ) (k) . We allow for spectrum sharlng
among various CR links. On channel fy, the signal vector yT(L )
the receiver of link u is given by:

yO —HEFOXM ¢ 3 HOTWL LN,
jePn\{u}
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where Hg w is an M x M channel gain matrix on channel fj of
link u. Each element of H&L is a multiplication of a distance-
and channel-dependent attenuation term, and a complex Gaussian
variable (with zero mean and unit variance) that reflects multi-
path fading. H( ) denotes the cross-channel gain matrix from the
transmitter of hnk j to the unintended receiver of link u, u # j.
The second term in (1) represents interference from transmitters
of CR links j # wu that share channel f; with link u. N is an
M x 1 complex Gaussian noise vector with covariance matrix I, =
(14 I, (k))L, representing the floor noise with unit variance plus
(whitened) interference I, (k) from PUs on channel fy.

We assume that interference cancellation is not used. A receiver
decodes its data streams by treating interference from other trans-
mitters as colored noise. The Shannon rate over link » on channel
fir is [10]:

R®) — log |1 + Tgk)HHgkq)LHC&k)legkLTgk)| (2)

k) . . . . .
where Cg ) is the noise-plus-interference covariance matrix at the
receiver of link v over channel fy:

CP =0+ Luk)I+ >
je@n\{u}
The total channel rate over all frequencies of link u is:
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PU protection is provided in the form of database-authorized
access and frequency-dependent power masks on CR transmit
powers. Note that the FCC [11] recently imposed power masks

even for idle channels, if such channels are adjacent to PU-occupied
de

channels. Let Prask = (Pask (/1) mask(f2) <> Pmask(fx))
denote the power mask vector. We require:
M o~ ~
> P = w(EOTOT) < Py (i) )
s=1

where P( ) denotes the power allocated on channel f; (frequency
d1men510n) over antenna s (space dimension) for the transmitter of
link u. If channel fj is not available for link w, PS( k) =0,Vs =
1...M. ’

Due to spectrum heterogeneity, we require link u not
to transmit on channels that are not in S, by imposing
a link-dependent power-mask vector P .qc(w). For link wu,

Pmask(u) = (Pmask(u fi)s mask(u f2),- Pmask(uafK))v
where Ppa(u, fr) = 0 if fi ¢ S, and Pmask(u, fx) =

Pask (fr) otherwise. Note that P ,q(uw) differs from one link
to another. We impose following constraints:

Cl:cy < Ry, Yue oy

C2: (T TM) < Progak(u, i), Yk € Ui, Yu € By

3 2 w(TPTEH) < Poax, Vue dy.
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where C1 ensures that all links achieve their rate demands, C2
ensures that the frequency-dependent power masks are satisfied,
and C3 presents a maximum-power budget constraint (Ppax) at
node u (we assume nodes have an identical power budget).

B. Noncooperative Game Formulation

Each CR link represents a player in the PM game who aims
at maximizing its utility, defined as the negative of its transmit
power. The game’s strategic space () is the union of the strategic
spaces of various players, subject to constraints C1, C2, C3 in (5).
Each player u competes against others by selecting his strategic
action of K precoders, denoted by T, < ('ﬂ}), TEE’, ce ’TELK)).
T, is an M x KM block matrix, comprised of K M x M

matrices. The payoff for player u, given below, is a function
def

of its action T, as well as other players’ actions, T, =
(T17 T27 LY )Tu717 Tu+1> .. )TN):
Uu(Ty, Toy) £ =3 aw(THTHH). ©)
k€S,

The transmitter of each link assigns power values over both
the space and frequency dimensions, and configures its radiation
pattern to maximize its own return. Formally, CR user u solves the
following problem for its optimal precoders T

maximize Uu(’i‘m’i‘,u)
(T vhes.}
S.t. Cl': R, > ¢y 7
c2: w(TETIH) < PLo(u, fi), k€ Uk
c3: Y u(TPTEH )SPmax.
keV i

III. EXISTENCE AND UNIQUENESS OF THE NE

Intuitively, three factors affect the existence of a NE of (7): Net-
work (multi-user) interference, PU protection requirement (through
power masks), and nodes’ power budget. To deal with network
interference, we first remove the power mask and power budget
constraints (these constraints will be incorporated later) and have:

minimize ). tr(’i‘q(lk)I’?[‘Sf)H)
(TP ke ) kES, ®
s.t. C1” as in problem (7).

The precoding matrix TS}“) can be written as ~Sf€) = T&k) X

chu)l/2 where T&k) is an M x M matrix with unit-norm column
vectors, specifying the directions to which the antenna array of node
u points its beams. P(") is an M x M diagonal matrix whose entry
(s, s) is the power allocated for sub-channel (s, k), P (") .Both T

and P(“) shape the antenna patterns.

At a NE, let p’ £ (P B, P{)) be a1 x M
nonnegative vector, which denotes the power allocation vector of
link » on its M antennas at fre(%uency fr (for fr. & Sy, pSﬁ) is a

zero vector). Let p,, o (pu ,pu ,...7pu )) be a 1 x M K vector,

which denotes the power allocation on all antennas and frequencies
of link u. Let p = (p1,p2,...,pn) € RYEM denote the power
allocation on all antennas and frequencies of all players.



We observe that the unit matrix I is positive definite, so the
objective function in (8) is non-decreasing in every element of
py. In other words, at a NE of the game (if one exists), the
inequality constraint C1° becomes equality. Otherwise, one can still
lower the power consumption to achieve a smaller value for the
objective function while meeting the rate demand. This fact defines
a feasible set for p, denoted by Qyeqsinic(c), corresponding to a
given requested rate profile ¢ = (c1,c¢s,...,cn) at a NE. For a
given rate profile ¢, the game (8) has at least one bounded NE and
only bounded NEs, if Qeqsibie(c) is nonempty and bounded.

Theorem 1: Let Gy be defined in (11) and matrix Gj be
obtained from Gy, by deleting rows Gy, (u, :) and columns Gy(:, u)
for all {ulk ¢ S,}. If G} is a P-matrix! Vk € Uk, then
Qfeasibie(c) contains at least one bounded vector p € Rf KM and
only bounded vectors p. In other words, the game (8) admits at
least one bounded NE and only bounded NEs.

Proof: We first claim that Qfeasible(c) contains at least one
bounded vector p € RYXM or the existence of a bounded NE
to the game (8):

Lemma 1: Given that G/, is a P-matrix Yk € Uk, then there
exists at least one bounded vector p € Qeqsipic(C) € Rf KM

Proof: See Appendix I of [13]. O

The remaining task is to show that the game (8) admits only
bounded NEs or Qfeqsivic(c) is bounded. To that end, we rely
on the concept of asymptotic cone of a nonempty set in recession
analysis [14]. For a nonempty set Q € RY, its asymptotic cone,
denoted by Qgsymp, consists of vectors d € Rf , referred to as
limit directions. Each limit direction vector d is defined through
the existence of a sequence of vectors p,, € Q and a sequence of
scalars v, tending to 400 such that [14]:

lim 2 — 4.

n—oo Vp

(14)

The set Q is bounded if its asymptotic cone Qggymp contains
only the zero vector 0 [14]. Applying this to the set Q reqsibie(C),
the game (8) admits only bounded NEs if its asymptotic cone
Qasymp(c) contains only the zero vector. The asymptotic cone
Qasymp(c) is formally defined in (12).

Given that Qcqsipie(c) has at least one bounded p (Lemma 1),
it is clear that the vector zero O belongs to its asymptotic cone
Qasymp(c) (by the definition of limit directions). We now construct
a set Q(c) of which Qgsymyp(c) is a subset and prove that Q(c) =
{0} if G}, is a P-matrix Vk € .

Lemma 2: If d € Qgsymp(c) then d belongs to Q(c), defined
in (13).

Proof: See Appendix II in [13]. O

Assuming that there exists at least one d # 0 and that d € Q(¢),
then Vu € & and S, D k:

(T T [HL H
(k) H g4 (k) ~ .

tr(H,,”; Hu,j)tr(T;k)HT(

tilkes;}
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(k) H (k)
c (k) H 1 (k tr(Hu,’ Hu7)
2e-1) Y w(TPITS ))—5\4 2 <0
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G}, x [r(TEHTE) (TP TMT <o. (15¢)

'A matrix is a P-matrix if all of its principal minors are positive [12].

where S, D k and S; D k.

As G is a P-matrix for all k& € W¥g and
[tr(T&k)H’I‘&k)), . 7tr(’i‘;k)H’i‘;k))]T is a nonnegative vector,
(15¢) implies tr(’i‘&k)H’i‘Sp) =0 Yu € &n,Vk € Ui [12] or
d = 0. This contradicts the above assumption. Hence, Q(c) and
its subset Qqsymp(c) equal to {0}. Theorem 1 is proved. O

We now give some intuitions behind Theorem 1. As the diagonal
elements of Gj are positive (under rich-scattering environment),
then a sufficient condition for G/, to be a P-matrix is |G}, (u, u)| >

> |G (u, j)| (.e., row diagonally dominant) [12]. The following
i#u

inequality guarantees that game (8) has at least one bounded NE
and only bounded NEs:

a1
Mdet(HEHE)) ™

S w@PTHK)
=

—1)Vk,Vu

> (2% (16)

The nominator of the LHS in (16) represents the strength of
the channel gain of link » on channel fj, while its denominator
describes the strength of cross-(interfering) channel gains from
other links j, j # u, on the receiver of link u. First, for the game (8)
to have at least one NE (at which the required powers of all links
are bounded), the multi-user interference in each channel f, should
not be too strong. Second, the acceptable multi-user interference is
explicitly quantified in (16), and is a function of the rate demand c,,
of each link u. For higher rate demands, inequality (16) becomes
stringent, meaning that lower multi-user interference is necessary.
Hence, inequality (16) can be used as a criterion to reject or admit a
newly requested transmission/rate. When links set their target rate
too high that inequality (16) does not hold, a bounded NE may
not exist. In this case, nodes keep increasing their transmit powers
to meet their rate demands. Network interference becomes more
severe and no link reaches its requested rate (interference-limited
communications).

To better interpret inequality (16), recall that each element of
channel gain matrices in (16) is the product of a complex Gaussian
variable with zero mean and unit variance (in the HS‘BL matrix) and

(K
Nt

u,u

the distance-dependence attenuation factor: Hﬁ’% =

where n is the free-space attenuation factor and d,, is the
transmission distance of link w. Inequality (16) can be rewritten
as:

1
Mdet(EEAE)HM

Y Gee@®Ta®)
{ilias,y o

>(26“—1)Vk,Vu. (17)

(17) holds if the distance between the transmitter and the receiver
is small enough compared with distances between the receiver and
its interferers, the channel gain matrix of link u is full-rank (this is
often the case in a rich-scattering environment) and its requested
rate is not too high. Given the existence of bounded NEs to the
game in (8), we now incorporate the power mask and power budget
constraints in the following theorem.

Theorem 2: The game (7) admits at least one bounded NE and
only bounded NEs if G, is a P-matrix and the vector-inequality
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below holds element-by-element Vk € Wy and Vu € Oy

. Prask (Fx)
200 —1 T+ Lpu(R)
G, x : < : (18)
26 — 1 Prnask (%)
T+ Ly (R)
and
7 U+ Lu(k) Gy M u) x 200 = 1...2% = 1]T < Prag
kES,,

(19)
where each element of vector [2¢ — 1...2% — 1]T corresponds to
a link j that shares channel k£ with u (ie., k € S; and k € S,),
G, "(u,:) is the uth row of the inverse of matrix G}>2.

Proof: See proof of Theorem 2 in [13]. O
From (18), if PUs are more active on a given channel (higher
I,.(k)), the inequality becomes stricter. This means that CRs
should reduce their transmission power on this channel to avoid in-
terfering PUs. Moreover, as the inequality becomes tighter (smaller
LHS of (18)) when PUs become more active, it is less likely
for a NE to exist. Hence, besides the PU protection requirement,
inequality (18) also shows the interference effect from PUs to CRs.
So far, we have derived conditions that capture the factors that
affect the existence of a NE of the game (7). The conditions in
Theorem 1 ensure that network interference is mild enough to
support the requested rates. The conditions in the first inequality
in Theorem 2 enforce that the requested rates are not too high to
harm PUs reception given PUs’ activities (indirectly captured by
PUs’ interference). The last inequality in Theorem 2 guarantees
that rate demands are affordable given nodes’ power budgets.
When the spectrum opportunities are homogeneous (i.e., S, =
U, Vu), one can verify that by removing the resource and PUs
protection constraints and setting the number of antenna to be one,
the conditions in Theorem 1 reduce to the conditions derived for
the NE existence in single-antenna (legacy) networks (in Theorem
5 of [8]). The authors of [8] proved that their sufficient conditions
become necessary when K =1 and M = 1, i.e., a single-channel
SISO network (Proposition 11 of [8]). They also showed that for
the case K = 1 and M = 1, their sufficient conditions are identical
to those in [9]. Hence, though we cannot show that the sufficient

2Since G;v is a P-matrix, it is invertible.

conditions in Theorems 1 and 2 are also necessary in general cases,
the following corollary gives a sense of how tight the conditions
in Theorem 1 are.

Corollary 1: If M = 1 and spectrum opportunities are homo-
geneous, the conditions in Theorem 1 become the sufficient for the
NE existence derived for the SISO network in [8]. Furthermore,
If K = 1, then the sufficient conditions for a NE existence in
Theorem 1 become necessary and identical to those in [9].

One may be curious about the relation between the NE existence
and the fulfillment of rate demands. The following theorem shows
that if the requested rates can be supported, then a NE must exist.

Theorem 3: If rate demands are supported, then the game (7)
admits at least one NE.

Proof: Similar to the proof of Theorem 3 for the homogeneous
spectrum sharing in [13]. (]

Theorem 3 also points out that a NE does not exist only if
the requested rates are not met. In such a case, players whose
rates are not achieved have to reduce their demands (or even leave
the game to reduce network interference and facilitate other links’
transmissions), and then repeat game (7). Investigating this process
would require a repeated game, which is left for a future work.

To analyze the uniqueness of the NE, we resort to variational
inequalities theory, casting (7) as a variational inequalities (VI)
problem [5].

Theorem 4: If game (7) has a NE, then this NE is unique.
Proof: See Appendix A. (]

Theorem 4 indicates that (7) does not have multiple NEs. Hence,
the NE existence condition of (7) is also the NE uniqueness
condition (formally stated in Theorem 5 below).

Theorem 5: If the conditions in Theorem 2 hold, then there
exists a unique NE of the game (7).

For the best response, each link needs to solve the individual
utility optimization problem (7). (7) is a convex problem, which
can be solved efficiently by standard solvers. One can also exploit
the strong-duality to derive a low-complexity solution for (7). Due
to space limit, we omit description of such a solution, which can
be found in [13]. In [13], we can also prove the convergence to the
game’s unique NE.

IV. NUMERICAL RESULTS

We first numerically evaluate the conditions for the existence and
uniqueness of a NE. To save the space, we consider a network of 2
links (link 1: node 1 to node 2; link 2: node 3 to node 4) and one
channel. Each node is equipped with 2 antennas. Both links have



a rate demand of 3 bps/Hz. Channel gain matrices among the 4
nodes are in Section IV.B of [13] (where H(:,:,,7) is the channel
gain matrix from node ¢ to node j).

Conditions in Theorem 1:

pur | THGo2 DHEG2,1)]E (28— 1) TG 9RA0)
P (28 — 1) MHEADHEAD) (4, 3)H( : 4,3)[2

_ [ 0.0808

o [—0.0252

—0.0241
0.0748

(20)

The above G is a P-matrix as it meets the sufficient conditions
in (16). Hence, Theorem 1 holds.

Now, we check conditions in Theorem 2.

Conditions in Theorem 2 to protect PUs:

1 [13.7588  4.4330
G = [4.6353 14.8624} @b
The inequality (18) to protect PUs is:
Pask (1)
ot [ 221 [ 12734 —uaskcr )
1 25 -1 | | 13648 | = | Pmask1)
1415, (1)

The inequality (22) holds if the power mask is 136.48 times
greater than (1 + I, (1)) (note that 1 + I, (1) is the total floor
noise (normalized to 1) and the PUs’ interference on channel 1,
I, (1)). This is the case if PUs’ interference is not too strong. If
cognitive radios obtain temporarily idle (“white”) channels from
spectrum databases, then there is no active PUs (i.e., I, (1) = 0).
In this case, inequality (22) holds easily.

Conditions in Theorem 2 regarding the total power budget
constraints:

The LHS of (19) for the two links reduce to scalars in the
considered example (as K = 1) is:

(141, (1)) x [13.7588  4.4330]x [2° —1 23 —1]T
=127.34(1+1,,(1))

(1415, (1)) x [4.6353  14.8624] x [2% —1 23 —1]T
=136.48(1+1I,,,(1))

The second inequality (regarding the total power budget con-
straint) can also be met if the power budgets of link 1 and link
2 are greater than 127.34(1 + Ip,(1)) and 136.48(1 + I,,(1)).
Similar to the inequality (22), these conditions can also be met
easily in practice. Note that as our example has only one channel
(for simplicity), then the conditions regarding the power budget
constraints are similar to that for the power mask constraints.

We now simulate a CMIMO network of IV links (i.e., 2N nodes)
which are randomly placed in a square area of length 100 meters.
Each node has 4 antennas. The simulation results are averaged over
40 runs. There are 10 channels with bandwidth of 16 MHz. Due
to spectrum heterogeneity, we assume that channels ¢+ 1, ¢ 42 are
not available for link 7, if 7+ < 8. Otherwise, channels i —7, i — 8 are
not available for link 7. We set Pax = 1000 mW and the power
mask Pk = 0.5Pnax for all channels. The channel fading is
flat with free-space attenuation factor of 2. The spreading angles
of the signal at the receive antennas vary from —=/5 to /5. The
close-in distance is 1 m. The thermal floor noise is —174 dBm/Hz.
The PUs interference on all channels is —100 dBm/Hz. We also
assume that links have identical rate demands.

For a given simulation run, there is a probability that the
conditions in Theorem 2 hold and the game converges to a unique

(23)

NE. Fig. 1(a) depicts the probability (percentage of runs) that the
game converges to a NE (a NE exists) versus the rate profile
when 10 links are active and 10 channels are used. As the rate
demand increases, the probability that a NE exists decreases. This
is because the conditions in Theorem 2 become more stringent. Fig.
1(b) depicts the probability that a NE exists versus N when the
rate demand is 1 bps/Hz. As N increases, the network/multi-user
interference becomes more severe, it is unlikely that the conditions
in Theorem 2 are met. Thus, the probability of a NE existence
decreases.

Probability of NE existence
Probability NE existence

o
N

Q
02 04 08

O‘S 1‘ 1.2 1‘4 1‘6 18
Rate Demand (bps/Hz)

~

8, 8 10 12
Number of Links

(2) (d)

Fig. 1. (a) Probability of NE existence vs. rate demands, (b) Probability of NE
existence vs. number of links.

Fig. 2 depicts the total power consumption for a network of 10
links with a rate demand of 1 bps/Hz. The game converges after a
bout 13 iterations under Jacobi updates. Though we only prove the
convergence under Gauss-Seidel update [13], simulations show that
the game also converges under Jacobi and asynchronous updates.
Fig. 3 shows the averaged number of iterations before reaching the
NE under both synchronous (Jacobi and Gauss-Seidel) and asyn-
chronous updating methods. For asynchronous updating, we allow
odd-numbered links skip their updates every other iteration and
even-numbered links skip their updates once every 3 iterations. As
we can see, the game still converges to the NE under asynchronous
update although its speed is slower than synchronous updates.
When all players update their strategies simultaneously (Jacobi),
the game converges faster. The difference in convergence speed of
the Jacobi and Gauss-Seidel updates becomes more significant with
the increase in the number of players.

7600 -

Total Transmission Power
¥ 3
g g
g8 8

7300 -

7200,
0

n n
15 20 25 35 40
Iterations

Fig. 2. Total network power consumption vs. iterations.

V. CONCLUSIONS

We derived sufficient conditions under which a cognitive MIMO
network with heterogeneous spectrum sharing can support a given
set of rate demands. By formulating the problem as a noncoop-
erative game, using variational inequalities theory, and recession
analysis, we derived sufficient conditions for the existence and
uniqueness of the NE of the game. These conditions capture the
interference from PUs, network interference of CMIMO, power
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Fig. 3. Convergence speed vs. number of CR links.

budgets of CMIMO nodes. Using these conditions, a node can
instantly decide if its requested rate can be supported.
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APPENDIX A
PROOF OF THEOREM 4

We start by introducing a VI problem.

Definition of a VI problem: [5] Given a subset K of the
Euclidean n-dimensional space R™ and a mapping F' : K — R"”,
the VI problem VI(K,R™) is to find a vector °P* € K so that:

(x — x°PHTF(x°P) >0, VK. (26)

In the following, we state the sufficient conditions [5] for the
existence and uniqueness of a solution to the above VI problem
when the set K has a Cartesian structure, i.e., K = K; x Ky X

N

... x Ky (where K, € R™ and }_ n, = n).

u=1
Theorem 6: Given that the set K has a Cartesian structure, the
above VI(K,R™) problem admits a unique solution z°P! if K, is
closed and convex and F is continuous uniformly-P function, i.e,
there exists a positive constant o such that:
INT / 72
max (x, —x F(x,) — F(x,)) > a||lx, —x
s @ = @) (Flew) - F@l) 2 aleu il
Ve, z, € K,.

As the set of precoding matrices of each player in the game (7)
are complex matrices. To reformulate the game (7) as a VI problem,
we use the isomorphism in equation (24) to map the complex matrix
domain to the Euclidean domain, where vec() is a matrix operator
that stacks columns (from left to right) of an m X n matrix to form
an mn X 1 vector. _

The gradient of a matrix function (.) w.r.t T, is given in (25).
We are now ready to map the game (7) to a VI problem. If all
conditions in Theorem 2 are met, the strategy set of each player u,
denoted by Q, € CM*EM "is nonempty. Additionally, it is also
easy to verify that @, is convex and bounded. Hence, problem (7) is
a convex problem. The following inequality features the necessary
(and then also the sufficient) condition for a strategy TSP to be
the best response:

(T — T @ VU, (Ty, T_,) <0 VT, € Qq

where A o B = vec(A)7 vec(B). _
Lets define Q = Qy x...Qy and F = Fy x...x Fy with F,, =
-VU,(T,, T_,). By comparing (28) with the above definition of
a VI problem, the strategy set TP ST x ... x T%" is a NE
of the game (7) if and only if T°P! is a solution of the VI(Q, F')
problem. Therefore we can rely on VI theory to analyze the game

- _ N - .
Let T = [Ty x...x Ty] and T/ = [T} x ... x T’ be two
different strategy set of the strategic space ) of the game (7), then:
F(T,)=-VU,(T,,T_,) =T,
F(T,) = —VU,(T,,T_,) = T,.

Consequently, we have:

vec(T, — T,,)"vec(F(T,) — F(T,)) = 1||vec((T, — T,,))|*.
(30)
The above inequality exactly meets the condition (27) so that the
mapping F is a continuous uniformly-P function. Moreover, () has

a Cartesian structure. Hence, the VI(Q, F') problem has a unique
NE, so does the game (7). O

(28)

(29)



