Dynamic Spectrum Access in Non-stationary
Environments: A DRL-LSTM Integrated Approach

Mingjie Feng!, Wenhan Zhang?, and Marwan Krunz?
"Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, 430074 China
2Dept. Electrical & Computer Engineering, The University of Arizona, Tucson, AZ 58721 USA
Email: mingjiefeng @hust.edu.cn, wenhanzhang @email.arizona.edu, krunz@email.arizona.edu

Abstract—In this paper, we investigate the problem of dynamic
spectrum access (DSA) in non-stationary environments, where
secondary users (SUs) and primary users (PUs) operate over a
shared set of orthogonal channels. The non-stationarity is caused
by the time-varying PU activity and the coupled channel access
strategies of different SUs. Considering such non-stationarity
and the channel dynamics, the DSA problem is formulated as
a hidden-mode Markov Decision Process (HMMDP), which can
be decomposed into multiple MDPs under different modes. At
each time, one of the modes is active, each mode corresponds to
a unique MDP. The HMMDP is solved when the active mode
is determined and the MDP under this mode is solved. We
first propose a deep reinforcement learning (DRL) framework
for solving the MDP under a given mode. We then propose a
long short-term memory (LSTM)-based approach to predict the
active mode at each time slot. Simulation results show that the
proposed scheme outperforms benchmark schemes by achieving
significantly fewer collisions and improved spectrum utilization.

Index Terms—Dynamic spectrum access; non-stationary envi-
ronment; hidden-mode Markov Decision Process; deep reinforce-
ment learning; long short-term memory.

I. INTRODUCTION

The proliferation of wireless applications has triggered
unprecedented growth of mobile traffic. It is projected that the
sixth-generation (6G) wireless networks will serve 107 mobile
devices per km? [1], [2], which represents a 10x growth
from the fifth-generation (5G) networks. Meanwhile, with
the emergence of data-intensive applications, mobile devices
need to be supported by wireless links with much higher
data rates. Given the limited spectrum, providing high data
rate services to a large number of devices is challenging.
Utilizing new spectrum bands, licensed or unlicensed, is a
promising approach to deal with such a challenge. However,
the expansion of licensed bands is limited by the high cost of
the spectrum and regulatory constraints. In contrast, unlicensed
bands are free to use, but are often overcrowded and are
subject to strict operational rules due to interference concerns.
Due to these limitations, there is a consistent scarcity of
spectrum bands, which necessitates achieving higher spectrum
utilization in future wireless networks.

A popular approach to increase spectrum utilization is to
support dynamic spectrum access (DSA) [3]. DSA allows
secondary users (SUs) to opportunistically access the chan-
nels of primary users (PUs) without causing interference to
these PUs. DSA has been applied to the Advanced Wireless
Services-3 (AWS-3) band, as well as the Citizens Broadband

Radio Service (CBRS) band. Furthermore, DSA-based Wi-
Fi operation in TV white space has been standardized in
IEEE 802.11af. However, due to practical concerns and various
challenges that remain unsolved, current DSA systems operate
in a conservative way. Thus, the full potential of DSA has not
yet been harnessed.

A key design issue in DSA is to enable the SUs to accurately
detect idle channels. Most existing works adopt a listen-before-
talk (LBT) approach, where an SU senses the channels and
makes its channel access decision purely based on the sensing
result [5]. However, this approach can only be applied in
environments with slowly varying spectrum availability, since
it is based on the assumption that the sensing results at a
given instant remain valid for a sufficiently long time. To
enable DSA under fast-varying spectrum dynamics, an SU
needs to predict the spectrum usage of PU(s) and access
the channels accordingly. As indicated in existing works,
spectrum usage exhibits a Markovian behavior in fast-varying
environments [4]. Thus, the DSA problem was formulated
as Markov Decision Process (MDP) and solved with rein-
forcement learning (RL) algorithms [6]-[12]. In particular, due
to the ability to solve large-scale MDPs, deep reinforcement
learning (DRL) was recently employed as a powerful tool
for capturing the temporal variations in spectrum usage make
optimized DSA decisions (e.g., [9]-[12]). The key idea of
DRL is to train a deep neural network (DNN) to approximate
the state-action value functions (a.k.a. Q-functions). With these
estimated Q-values, a near-optimal policy (i.e., action selection
strategy under a given state) can be obtained.

Although DRL has been successfully applied to DSA sys-
tems in literature, most existing works consider a stationary
environment with fixed spectrum dynamics. Spectrum avail-
ability patterns in actual DSA systems may be non-stationary.
On the one hand, the variations of PU activities (busy or
idle) may change over time (e.g., a PU is more likely to be
active during certain periods of a day). On the other hand,
with potential mutual interference between SUs, the channel
access behavior of an SU is part of the environment observed
by other SUs. As each SU adapts its channel access strategy
based on the strategies of other coexisting SUs, the statistics
of spectrum dynamics observed by each SU change over time.
Due to such non-stationarity, the MDP to be solved by each SU
is time-dependent. Thus, standard DRL algorithms can only
learn short-term variations in spectrum usage, while the long-

term trends caused by the time-varying PU activity patterns
and the SU impact on such trends cannot be captured.

In this paper, we investigate the problem of DSA in non-
stationary environments, aiming to maximize the number
of collision-free transmissions for each SU. We propose an
integrated approach that combines DRL and long short-term
memory (LSTM) to derive efficient solutions for SU channel
access. The main contributions are summarized as follows:

« We formulate the DSA problem as a hidden-mode MDP,
which can be decomposed into multiple stationary MDPs,
each corresponding to a specific mode. The MDPs under
various modes share the same setup of state, action, and
reward, but with different transition probabilities. At each
time slot, the system is in one of the modes, which is
determined by the PU activity pattern.

« We first propose a DRL-based solution to the MDP (i.e.,
SU channel access) under a given mode. In particular,
we apply a mechanism called importance sampling to
stabilize and accelerate the training process.

« We then propose an LSTM-based approach to capture the
temporal pattern of spectrum usage and predict the active
mode at each time slot. Each SU selects the piecewise-
optimal policy under that predicted mode.

o We evaluate the performance of the proposed schemes
with simulations. The results show that our approach
can significantly improve spectrum utilization and reduce
collision rates compared to benchmark schemes.

In the remainder of this paper, we first present the system
model and problem formulation in Section II and IIL, respec-
tively. The solution algorithms are introduced in Section IV.
We then show the simulation results and conclude the paper
in Section V and VI, respectively.

II. SYSTEM MODEL

We consider a wireless system with K SU links, which
coexist with M PU links. The two sets of links operate
over a shared set of N orthogonal channels indexed by n €
{1,...,N}. Time is slotted. At any time slot t t = 1,2,.. .,
the activity of PU m (m € {1,...,M}) follows a two-state
Markov chain with states 1 (active) and 0 (idle), and with
transition probabilities given by:

P () pra’ (1) W
) (6) (1) |

We consider the case that each PU link can utilize one or
more channels simultaneously, and the channel dynamics of
each PU are time-invariant. The channel allocation for PUs
is coordinated through a centralized entity, which ensures no
collision between any two PUs. Let b, be the number of
channels used by PU m, we assume that Zﬁf:l b, < N.

At time ¢, the probability that SU k (k € {1,...,K})
has data to transmit is denoted by gi(t). Once SU k starts
transmitting, it needs a random number of time slots (not
necessarily contiguous) to complete its transmission. This
number is dictated by the packet size at the SU as well as

Pl - [

its modulation and coding scheme (MCS). At each time slot,
an SU may access one of the N channels or not access any
channel. Before accessing a channel, each SU senses all the
N channels to determine which ones are idle. If a channel
is sensed as busy by an SU, the SU also identifies the ID of
the PU that is using the channel. After that, each SU makes
its decision on channel access in the next time slot. From the
perspective of each SU, the transmission patterns of coexisting
users (PUs and SUs) are unknown in advance. We assume that
two links (PU or SU) would collide with each other if their
communication ranges overlap and they transmit on the same
channel during the same time slot.

III. PROBLEM FORMULATION

The channel access of each SU is modeled as a hidden-
mode MDP, which consists of a finite set of MDPs that share
the same state space, action space, and reward functions,
but have different transition probabilities caused by the non-
stationary PU activities [13], [14]. Mode transitions happen
at a much slower pace than state transitions. As a result, the
mode remains the same during a time period consisting of
multiple time slots. As shown in Fig. 1, we consider L modes,
L ={Mi,...,Mp}. At each time slot, the system is in one
of the modes, and that mode is called the active mode, which
varies over time with a pattern that is unknown to all SUs.

The active mode at each time slot is determined by the
combination of activity patterns of all PUs. We classify the
activities of each PU m according to the values of pS,?” (t) and
pgo) (t), Ym € {1,...,M}. Specifically, we equally divide
the range [0, 1] into D non-overlapping segments given by
0, 5], (%, 3], .., [252, 1]. Then, the activity pattern of PU
m is classified according to:

1 1
Pattern 1 : ps,?l)(t) e [0, 5], p%o)(t) € o, 5]
1 1 2
Pattern 2: p{0! (¢ =, () €=, =
attern pm()E[O,D], pm()E[D’D]
D-1

Pattern D : p{®V(t) € [0,

1 2 1
Pattern (D +1): pY(t) € [, =], pit9(¢) € [0, =]
D' D
D—-1 D—-1
Pattern D? : pfgl)(t) el 1], 5%0) (t) e D 1]
2

From (2), the number of activity patterns for each PU is D?.
Given M PUs, the total number of modes L is L = DM,
The MDP under each mode | € L is specified by a tuple
M; =< §, A, P, R >, where S is the state space, A is
the action space, R is the set of reward functions, and P; is
the transition probability matrix of MDP [. The system state
at time ¢ is defined as the spectrum usage pattern, which is
represented by a IV x 1 vector with elements O or 1:

S(t) = [SD(t),...,SM ()] 3)

LSTM predictor

States

Mode 1 MDP:
PU activity pattern 1

Mode . MDP:
PU activity pattern L

Fig. 1. Model of hidden-mode MDP for non-stationary spectrum dynamics.

where S(™)(t) = 1 indicates that channel n is busy and
S(M(t) = 0 indicates otherwise. The action of SU k at
time ¢ is its channel access strategy, denoted by Ax(t) €
{0,1,..., N}, where Ag(t) = n indicates that SU k selects
to access channel n at time ¢ and Ay (t) = 0 indicates that SU
does not access any channel at time ¢. Let r; be the reward
that an SU receives at time ¢. This reward is determined by:

1) The SU accesses a channel that is not used by a PU or
any other SUs within its communication range. In this
case, no collision would happen and r, = 1.

2) The SU accesses a channel that is used by a PU or
another SU within its communication range. In this case,
a collision would happen and r; = —1.

3) The SU does not access any channel, and thus r; = 0.

In our problem, each SU acts as an agent, aiming to learn
from the environment and find the optimal policy that maxi-
mizes the expected long-term accumulated discounted reward.
A policy determines the strategy of taking actions under cer-
tain system states. In general, a policy is in a stochastic form
to enable the exploration of different actions. Let 7 be the
policy of SU k, given by mx(a|s) = Pr(Ax(t) = a|S(t) = s),
where a € A and s € S. The key step to obtain the optimal
policy is finding the value of each state-action function, also
known as Q-function, which is defined by:

Qn(s,a) = Ex[G(t)|S(t) = s, Ak(t) = d
=70 4~ Z PS(:,)vﬁ(s') %)
s'eS

where G(t) is the cumulative discounted reward obtained after
time ¢, given by G(t) = Z?:o ¥*ri4xs1, and 7 is a discount
factor used to balance the long-term and short-term rewards.
G(t) consists of the instant reward r§“) and the expected
discounted future rewards when the system transitions to other
states. PS(Z,) is the transition probability from state s to s’ when
action a is taken. v, (s) is the state-value function for state s,
which is defined as the expected reward when the system is
in state s and follows policy 7(s). This v,(s) is given by
vr(s) = Ex[G(t)|S(t) = s] = D> ,ca7(als)Qx(s,a). Given
the values of Q-functions, the optimal policy 7* is obtained
by solving 7* = argmaxQ, (s, a).
™

IV. SOLUTION ALGORITHMS

In this section, we solve the hidden-mode MDP problem.
At each time slot, the system predicts the active mode. Based
on this prediction, each SU selects the piecewise-stationary
policy that is optimal for that mode.

A. DRL-based Spectrum Access Under a Given Mode

We first consider the spectrum access decision of an SU
when the active mode is given. Because the mode is deter-
mined by PU activities, all SUs operate under the same mode.

1) MDP Solution for Each SU: A common approach to
solve an MDP is Q-learning, which is based on iterative
updates of the Q-values as the agent interacts with the en-
vironment. Suppose the system is in state s, and the agent
takes action a; at time t. The agent updates the Q-value of
state-action pair (s;,a;) based on the observed reward and
state transition:!

Q(8t41,a141) < Q(s¢, ay)
+a|rgr+y gff@(stﬂa at1) — Q(st,at) | - (5)

Despite the simplicity of the updating rule in (5), a traditional
Q-learning approach requires the agent to visit every state-
action pair and store all the Q-values, which is computational
impractical in systems with large numbers of states and
actions. An effective solution to this challenge is to use a
neural network (NN) to approximate the Q-values, denoted
by Q(s,a,w) = Q(s,a), where w is the weight matrix of
the NN. With the data observed from the environment (i.e.,
training samples), the NN can be trained to map the state-
action pairs to their corresponding Q-values. A key issue for
the application of NN in Q-learning is the correlations between
training samples [16], which potentially cause the learning
process to become unstable or even diverge. To address this
issue, a DRL framework based on experience replay was
proposed in [16], in which a deep Q-network (DQN) is trained
to approximate the Q-values. The input layer of the DQN is
set to the system state vector S(t) and the output layer is set
to generate the Q-values of all actions under the input state.

The idea of experience replay is to “freeze” the agent’s
experience for a certain time and use it to train the DQN later,
thus breaking the correlation between training samples. At
each time slot, the agent takes actions according to its current
policy and stores the experience, e; = (s, at, Tt, St+1), in a
target network. During DQN training, the experience data are
randomly sampled in the form of minibatches from the target
network to break the correlation between training samples.
Using these samples, the weights of the DQN are updated by
minimizing a loss function defined by the mean square error
between the DQN and the target network, given as:

2
£w) = | (r 49 mpx Qe ow) - Qaw) | ©

ITo avoid confusion, S (¢) is the vector for the state at time ¢ which can be
any state s € S, while s; is the specific state that is observed by the agent
at time ¢t. The same applies to Ay (t) and ay.

where the expectation is taken with respect to all samples of
(s,a,r,s’) in the minibatch, w~ and w are the weights of the
target network and the DQN, respectively. The problem given
in (6) can be solved via stochastic gradient descent. Note that
the weights of the target network are updated less frequently
to reduce the correlation with the DQN.

After the training of the DQN is completed, each SU takes
action based on the estimated Q-values. Specifically, the SU
first senses the system state at time ¢, i.e., the vector S(t).
Then, it inputs S(¢) to the DQN and obtains the Q-values of
all actions. Finally, the SU adopts an e-greedy approach to
allow random exploration, where the SU selects the optimal
action (one with the largest Q-value) with probability 1 — €
and randomly selects another action with probability e.

2) Convergence Acceleration with Importance Sampling:
Because some SUs may overlap in their communication
ranges, and they learn and adjust their policies simultaneously,
the environment from the perspective of each SU is non-
stationary and there may be a ping-pong effect. For example,
two SUs may select the same channel at a given time slot and
experience a collision. At the next time slot, they may both
select another same channel and observe another collision.
Hence, the system may take an extremely long time to
converge. On the other hand, when experience replay-based
training is applied where each agent’s experience is “frozen”
for a period of time, the SUs do not interact with each other
at the same pace and are unable to learn from instantaneous
feedback. As a result, the experience replay may be unstable,
causing the system to fail to converge [17].

To stabilize training and accelerate convergence, a key
observation is that the environment observed by an SU can
be made stationary conditioned on the policies of other SUs.
However, given that samples generated by experience replay
are obsolete (i.e., cannot reflect current system dynamics), the
SUs may not be able to disambiguate the age of the sampled
data from the replay memory. Importance sampling with off-
environment training is an effective approach to tackle this
issue [18]. The idea of importance sampling is to assign an
importance ratio to each sample in a minibatch (i.e., each
tuple e; = (s¢,a¢, 74, S¢41)), in a way that enables each SU
to learn in a reliable off-environment. Let {t;}(j = 1,...,J)
be the time when the samples with starting state s and action
a are collected in a minibatch. From the perspective of SU £,
denote a_j, as the joint action of other SUs at time ¢; and let

ﬂgi)(a_ k|s) be the joint policy of other SUs at time ¢;. Then,

= I = (als))

k' ¢k

ak|

Suppose the minibatch containing the samples generated at
{t1,...,ts} are used for training the DQN at time ¢;. Then,

the importance ratio is set to %
% — S

importance ratio, the loss function at time ¢; is given by:

J o (t:)
T} (a_kls)
L(w) = Z 0)(|
Jj=1 k —k S)

Incorporating the

(5~ Qs.aw)?| ®

where y; is the output of the target network at time ¢;, given

by y; = rj +ymax Q(sj,aj,w). With the weighted loss

function (8), the error of estimating the policies of other SUs
caused by time difference can be corrected. For example, if a
joint policy rarely occurs when it was stored in the minibatch
(ie., w7 7. (a_g|s) is low) but frequently occurs when used for

DQN training (i.e., rt)(a_k|) is high), a higher importance
is given to that joint policy. This way, each SU is learning in
an off-environment, resulting in faster convergence.

B. LSTM-based Mode Prediction

To implement mode prediction, each SU sends its sensing
outcome (PU activities on all channels and active PU IDs)
to a network controller, which determines the state of each
PU (busy or idle) by merging the outcomes from all SUs
(e.g., using majority rule), and trains an LSTM-based neural
network for mode prediction. Such prediction can be charac-
terized by the transition probabilities in (1). To capture the
temporal pattern of time-varying PU activity, we formulate
the prediction of the transition probabilities of each PU as a
regression model:

Z () = fo (ot — 1), p(t = 2), pi(t = 3),...)

me{l,...,M} (9

where Z,, (t) is the prediction outcome, p,, () is the PU activ-
ity indicator, where p,,(¢) = 1 indicates that PU m is busy at
time ¢ and p,,(¢) = 0 indicates otherwise. f,,,(-) is a function
that maps a sequence of recorded activities of PU m before
time ¢ to a prediction of its transition probabilities at time
t. This function needs to represent the complex relationship
between the current and previous PU activities. Intuitively,
the recent “fresh” data are expected to provide more useful
information about the current system dynamics, compared to
the data generated a long time ago. However, if we only
rely on short-term information, the prediction accuracy can be
degraded by errors caused by instant variations. In addition,
the long-term trend that evolves over time is not captured.

To capture the temporal pattern of PU activity and intel-
ligently combine long-term and short-term data, an LSTM
network is applied for mode prediction. The input layer
parameters of the LSTM network are set to the on-off activities
of the M PUs. The output layer parameters are the predicted
values of p(m)(t) and p%o) (t). Two fully connected hidden
layers are used for feature extraction and learning the nonlinear
relationship between the inputs and outputs. The activation
function is set to be Rectified Linear Unit (ReLU), given by
ReLU(z) = max(x,0). The ReLU function is widely used
in deep NN due to its capability of sparse representation and
low computational complexity. Backpropagation through time
is used to train the LSTM network.

A design challenge is how to obtain the labels for training
(i.e., the true values of p{y*)(t) and p(lo)(t)). One approach is
to use the statistics of the PU activity at the training sequence
to generate the labels. Given a sufficient number of iterations,

the values of p(m)() and pi” (t) can be approximated.

Another approach is to approximate the values of pS,?” (t) and
p%o) (t) by their time-averaged values over a short duration
around ¢. However, such an approximation may not be accurate
with insufficient data. Thus, the first approach can be applied
in systems that allow long training times, while the second
approach is preferred in systems that require fast convergence.

After the transmission probabilities of a PU are predicted, its
activity pattern can be classified according to (2). Combing the
activity patterns of all PUs, the active mode can be determined.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed strategies
using Matlab and Python simulations. We consider N = 10
channels, which are allocated to 4 PUs. The numbers of
channels allocated to the 4 PUs are 3, 3, 2, and 2, respectively.
The PU probabilities of being active vary over time during
each day, as indicated in Table I. There are 10 SUs. The
probability that an SU has packets to transmit is 0.5. On
average, there are 3 other SUs in the communication range
of each SU. We use a Keras-based framework in Python to
implement the proposed DQN approach. There are 10 neurons
in the input layer, which correspond to the usage pattern
of the 10 channels. The output layer has 11 neurons, each
corresponding to the Q-value when taking a certain action
under the input system state. There are 2 hidden layers, each
with 24 neurons. ReLu is utilized as the activation function.

During the DQN training, the learning rate « is set to 0.1,
and the discount factor -y is 0.95. As mentioned, the SU adopts
the e-greedy strategy for selecting actions to balance between
exploration and exploitation. Considering the fact that more
information about the environment is obtained as the training
proceeds, € (the probability that the SU randomly takes an
action) is set to decrease over time [19]. This way, the SU is
more likely to take a random action at the beginning, while
less likely to explore new actions as the learning continues.
The initial value of € is set to 0.7, and € decays in every
episode of training with a factor of 0.9999.

We compare five schemes for DSA. The first scheme is
termed “random selection”, where each SU randomly selects
a channel to transmit over in each time slot. The second
scheme is termed “myopic”, where each SU makes channel
access decisions purely based on the current sensing result,
i.e., an SU will access a channel if the channel is sensed
as idle at the current time slot. The myopic scheme has
been used in traditional DSA systems (e.g., cognitive radio
systems). The third scheme is termed “DQN”, where only the
proposed DQN-based approach is applied (i.e., without mode
prediction). The fourth scheme is termed “DQN+EWMA”,
where the exponential moving average (EWMA) method is
applied for mode prediction. Specifically, the index of the PU
activity pattern in the current time slot is taken as the rounded
values of the weighted (exponential weights) sum of indices
of PU activity patterns in the previous time slots, given by:

I(t) = Round (I(t — Dw(t — 1) +I(t — 2)w(t — 2)

H(t—3)w(t—3)+...) (10)

where w(-) are exponential variables. Finally, the proposed
integrated approach is termed “DQN+LSTM”.

We evaluate the collision rate under each scheme, defined
as the ratio between the number of collided transmissions
and the total number of transmissions. To evaluate spectrum
utilization, we consider the average channel utilization rate
of PUs and SUs, defined as the ratio between the number
of collision-free time slots and the number of time slots that
the user attempted to access over all channels. We vary the
average PU transmission duration, which is an indicator of
how frequently PUs switch between busy and idle states.

Fig. 2(a) depicts the collision rate of different schemes
versus the average PU transmission duration. As expected, the
collision rate of the random selection scheme is the highest
among all schemes and remains high even when the average
PU transmission duration is large (i.e., the PU activity varies
slowly). With spectrum sensing, the myopic scheme can lower
the chances of collision, especially when the PUs occupy the
channels for long periods of time. The DQN-only scheme
further lowers the collision rate, because the DQN of each
SU has been trained to support collision avoidance. With
mode prediction, the DQN+EWMA scheme achieves a lower
collision rate than that of the DQN-only scheme, since the
short-term spectrum usage variation can be captured. With the
LSTM network, the proposed DQN+LSTM scheme achieves
the best performance, since the temporal pattern spectrum
usage can be accurately predicted, thereby enabling each SU
to select the proper MDP.

Fig. 2(b) depicts the spectrum utilization of SUs. The DQN-
only scheme achieves better performance than the random
selection and myopic schemes, because each SU optimizes its
channel access policy under different spectrum sensing results
after its DQN has been trained. Benefiting from mode pre-
diction, the DQN+EWMA scheme improves the SU channel
utilization rate. With long-term spectrum usage prediction, the
DQN+LSTM scheme achieves the highest channel utilization.

Fig. 2(c) depicts PU spectrum utilization. It can be seen
that PU channel utilization under the random selection scheme
is significantly lower than other schemes. This is due to a
higher probability of collisions between SUs and PUs, which
decreases the number of successful PU transmissions. In
contrast, the number of successful PU transmissions is higher
under other schemes, since collision reduction mechanisms are
a part of these schemes. When the PU busy period is long, the
channel utilization rates of the myopic and the proposed DQN-
based schemes become comparable. This happens because
as the PU channel usage pattern varies more slowly, the
sensing result for a given time slot is likely to be valid for
a longer time. However, when the PU busy period is short
and the channel state changes rapidly, the proposed DQN-
based schemes achieve significantly better performance, due
to the fact that they can predict channel usage variations.
Finally, we observe that the incorporation of LSTM-based
prediction further enhances channel utilization, since mode
prediction contributes to a more accurate prediction of PU
activity, resulting in a higher PU channel utilization rate.

TABLE 1
PU BuUSY PROBABILITIES USED IN SIMULATIONS

PU ID Time 0:00-7:00 | 7:00-9:00 | 9:00-12:00 | 12:00-14:00 | 14:00-18:00 | 18:00-20:00 | 20:00-0:00
PU 1 0.2 0.3 0.7 0.4 0.8 0.6 0.5
PU 2 0.1 0.2 0.6 0.3 0.6 0.4 0.4
PU 3 0 0.1 0.6 0.1 0.5 0.5 0.3
PU 4 0.3 0.5 0.8 0.5 0.8 0.7 0.6

- s - S E— — ———
50 g

—=&— Random selection

—&—DQN+LSTM
—+—DQN+EWMA

Collision Rate (%)
Avg. SU Channel Utilization (%)

~
x
<
g
2 80 —=&—Random selection
N —&— Myopic
= DQN
D —4—DQN+LSTM
—&— Random selection ° —+—DQN+EWMA
—&— Myopic E 60
DQN E|
—4—DQN+LSTM ©
—+—DQN+EWMA 2
ob
s
<

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4
Average PU Transmission Duration (slot

(a)

5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Average PU Transmission Duration (slot)

Average PU Transmission Duration (slot)

(©)

Fig. 2. Simulation results. (a) average collision rate of different schemes, (b) average SU channel utilization rate of different schemes, (c) Average PU channel

utilization rate of different schemes.
VI. CONCLUSIONS

In this paper, we investigated the problem of dynamic spec-
trum access in non-stationary environments. We proposed an
LSTM-DRL integrated approach to capture spectrum variation
and make intelligent decisions on spectrum access. Simulation
results show that the proposed solution significantly reduces
the collision rate and improves spectrum utilization.

ACKNOWLEDGMENT

This research was supported in part by NSF (grants
CNS1910348, CNS-1731164, CNS-1813401, and IIP-
1822071), by U.S. Army Small Business Innovation Research
Program Office, and by the Army Research Office under
Contract No. WI9I11NF-21-C-0016. Any opinions, findings,
conclusions, or recommendations expressed in this paper are
those of the author(s) and do not necessarily reflect the views
of NSF or Army.

REFERENCES

[1] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G networks: Use cases and technologies,” IEEE Commun.
Magazine, vol. 58, no. 3, pp. 55-61, Mar. 2020.

[2] Z.Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan, “6G wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Veh. Technol. Magazine, vol. 14, no. 3, pp.
28-41, Sept. 2019.

[3] P. J. Kolodzy, “Spectrum policy task force report,” FCC, Tech. Rep.,
Nov. 2002.

[4] Y. Xing, R. Chandramouli, S. Mangold, and S. S. N, “Dynamic spec-
trum access in open spectrum wireless networks,” IEEE J. Sel. Areas
Commun., vol. 24, no. 3, pp. 626-637, Mar. 2006.

[5] Y.-C. Liang et al., “Sensing-throughput tradeoff for cognitive radio
networks,” IEEE Trans. Wireless Commun., vol. 7 no. 4, pp. 1326-1337,
Apr. 2008.

[6] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,” IEEE
Trans. Info. Theory, vol. 56, no. 11, pp. 5547-5567, Nov. 2010.

[7] C. Tekin and M. Liu, “Approximately optimal adaptive learning in
opportunistic spectrum access,” in Proc. IEEE INFOCOM’12, Orlando,
FL, Mar. 2012, pp. 1548-1556.

[8] S. Wang, T. Lv, X. Zhang, Z. Lin, and P. Huang, “Learning-based
multi-channel access in 5G and beyond networks with fast time-varying
channels,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5203-5218,
May 2020.

[9] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-

ment learning for dynamic multichannel access in wireless networks,”

IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257-265, June

2018.

O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for

distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,

vol. 18, no. 1, pp. 310-323, Jan. 2019.

H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distribu-

tive dynamic spectrum access through deep reinforcement learning: A

reservoir computing based approach,” IEEE Internet of Things J., vol.

6, no. 2, pp. 1938-1948, Apr. 2018.

C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “A deep actor-critic

reinforcement learning framework for dynamic multichannel access,”

IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1125-1139, Dec.

2019.

S. P. M. Choi, D.-Y. Yeung, and N. L. Zhang, “An environment model

for nonstationary reinforcement learning,” in Proc. NeurIPS’99, pp. 987—

993, Denver, Colorado, USA, Nov.—Dec. 1999.

S. Padakandla, K. J. Prabuchandran, and S. Bhatnagar, “Reinforce-

ment learning in non-stationary environments,” [Online] Available:

https://arxiv.org/pdf/1905.03970.pdf.

P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote, “A

survey of learning in multiagent environments: Dealing with non-

stationarity,” [Online]. Available: arXiv:1707.09183.

V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,

and S. Whiteson, “Stabilising experience replay for deep multi-agent

reinforcement learning,” in Proc. ICML’17, pp. 1146-1155, Sydney,

Australia, Aug. 2017.

K. A. Ciosek and S. Whiteson, “Offer: Off-environment reinforcement

learning,” in Proc. AAAI’'17, pp. 1819-1825, San Francisco, CA, USA,

Feb. 2017.

J. Wu, V. Braverman, and L. Yang, “Gap-dependent unsupervised

exploration for reinforcement learning,” in Proc. AISTATS’22, online,

Mar. 2022.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

